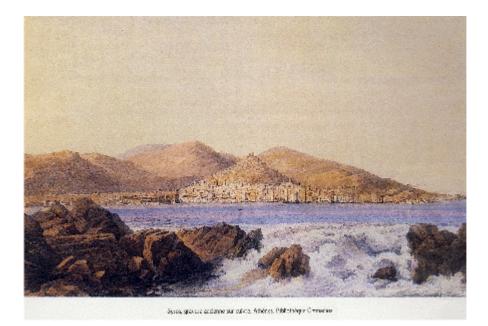
WaterStrategyMan EVK1-CT-2001-00098


PROCEEDINGS OF THE WORKSHOP ON THE RANGE OF EXISTING CIRCUMSTANCES

held at Hermoupolis, Syros, Greece 8th July, 2002

Prepared by Ruhr-University Bochum July 2002

The *workshop on existing circumstances* was held in the Auditorium of the University of the Aegean in Hermoupolis on the island of Syros, Greece on July 8th, 2002. It was attended by the partners of the *WaterStrategyMan* project as well as by a number of visitors.

All presentations held at the workshop and the reports on the water deficient regions are available for download (for project partners) on the ARID Cluster website http://arid.chemeng.ntua.gr/ and the WaterStrategyMan website (http://environ.chemeng.ntua.gr/wsm/)

Contents

1. INTRODUCTION	1
AGENDA	3
EXECUTIVE SUMMARY	4
MATRIX OF EXISTING CIRCUMSTANCES	7
LIST OF PARTICIPANTS	8
APPENDIX: INDIVIDUAL PRESENTATIONS	10

1. Introduction

1.1. The Project

The project "Developing Strategies for Regulating and Managing Water Resources and Demand in Water Deficient Regions" (EVK-1-2001-0081), in short WaterStrategyMan or WSM, is supported by the European Union under the Fifth Framework Programme and contributes to the key action "Sustainable Management and Quality of Water".

It is primarily aimed at developing and evaluating water strategies for water deficient regions in Southern Europe. There are four specific goals of the project:

- A review of existing approaches in terms of Integrated Water Resources Management (IWRM), demand management, sustainability indicators and development strategies
- The study of the differences between water quantity and water quality with regard to water management
- Highlighting the importance of the regional and cultural context
- The development of alternative IWRM options and long-term scenarios for water deficient regions.

The project has a duration of 3.5 years and consists of four phases: The first phase (diagnostic phase) will identify a set of representative regions in Southern Europe and will then define representative paradigms for water deficient regions which, in turn, will form the theoretical framework for developing, analysing and evaluating water management options.

At the end of phase one, six water deficient regions will be selected and conceptualised as paradigms.

In phase two (analysis phase), a consistent methodology for analysing and evaluating different water allocation scenarios and water management options will be developed and will encompass the entire range of the selected paradigms.

The strategy formulation phase is aimed at comparing and identifying appropriate plans, actions and policies that apply to the paradigms.

The main objective of phase four, the synthesis and dissemination phase, is the synthesis of the results from the previous project phases. Based on the six identified paradigms, widely acceptable guidelines and protocols will be formulated with a view to implement the European Water Framework Directive (WFD) timely and efficiently. The WFD essentially aims to improve the quality of aquatic ecosystems and at basing the utilisation of water resources on the principle of sustainability.

Each of the four project phases is organised in several work packages. Their structure in interdependence in the project in depicted in the following figure.

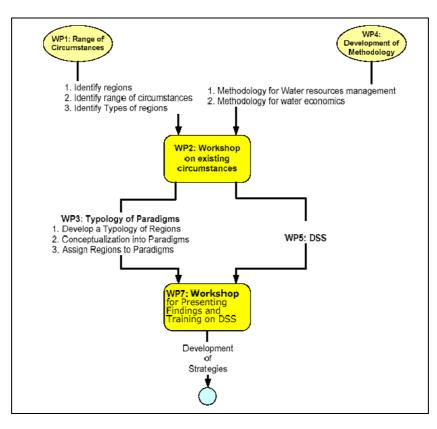


Figure 1: Structure of the work packages and their interaction

1.2. The workshop

Given the structure of the project described above, the workshop plays a major role for the definition of the subsequent work packages. The workshop brings together the efforts in WP 1 (Determining the range of existing circumstances) and WP 4 (Development of a methodology) and facilitates the passage into the subsequent work packages (WP 3, WP 5 and WP 7) of the project.

The workshop on the range of existing circumstances mainly serves the following purposes:

- Presentation on and discussion of the range of existing circumstances
- Constructing a typology for water deficient regions
- Highlighting the range of policy alternatives in general
- Outlining water management strategies for the regions presented

As a result, the workshop was organised in four sessions. In session one, the range of existing circumstances in the candidate regions of the six countries was presented. A typology of common circumstances in the water deficient regions was constructed in session two. The entire range of policy alternatives in IWRM was presented in session three. Finally, an exercise was thought up in order to outline water management strategies for water deficient regions (session four).

Agenda

9.30-9.40	Opening Session
Welcoming I	Partners and Workshop objectives (D. Assimacopoulos)
9.40-12.00	Session 1 - The Range of Existing Circumstances in Water Deficient Regions
•	Greece (I. Katsiardi)
•	Italy (A. Peruffo)
•	Israel (E. Feinerman)
•	Spain (C. Marin)
11.00-11.20	Coffee Break
•	Cyprus (I. Glekas, I. Iacovides)
•	Portugal (R. Maia)
•	
12.00-13.00	Session 2 - Exercise 1: Constructing a Typology of Water Deficient Regions
	(All participants. Moderator: D. Assimacopoulos)
13.00-15.20	Lunch Break
15.20-17.00	Session 3 – Towards Integrated Water Resources Management: The Range of Policy Alternatives (Moderator: E. Todini)
•	Demand Reduction and Supply Augmentation Options (E. Todini)
•	Competing water uses and economic instruments (B. Barraqué)
•	Environmental economic instruments (E. Interwies)
•	Social Capacity Building and Institutional Options (E. Vlachos)
17.00-17.30	Coffee Break
17.30-19.0 Regions	Exercise 2: Outlining Water Management Strategies for Water Deficient (Moderator: C. Karavitis)
19.00	End of Workshop

Executive summary

Session 1: The range of existing circumstances in water deficient regions

The presentations of the case studies by the partners in session one were organised in three parts: The first part of the presentation describes the key issues of water management in the country. Part two introduces the identified water deficient regions while part three discusses the range of circumstances in the identified regions in more detail; water related problems, instruments and responses were described thoroughly. This part of the presentation is aimed at describing the full range of existing circumstances and thereby first supporting the discussion of functionality of the tool and secondly at initiating the discussion for WP 8 (Generation of coherent water management scenarios).

In total, thirteen water deficient regions in six countries (Greece, Italy, Israel, Spain, Portugal and Cyprus) have been presented. The key issues in water management, represented by matrices for each region, are summarised on the next page.

It has been agreed that Israel, although initially considered as one region should be studied on the basis of two regions within the country. The reason for this is that the range of existing circumstances in the country is too wide to be used for the purpose of the case studies.

Details of the water deficient regions are provided in the presentations held during the workshop (appendix) as well as in the report on the range of existing circumstances (Deliverable No. 1).

Session 2: Exercise 1: Constructing a typology of water deficient regions

Based on the individual partner presentations in the previous session, an attempt was made to characterise common issues in the regions. A consistent typology of the thirteen regions has been constructed using the Indicators Matrix given below. The objectives of this exercise were to find common characteristics and gaps in the identified regions and to develop a coherent typology for the regions.

Although the thirteen water deficient regions vary with regard to size, topography, water quality problems and water management, several shared features have been identified.

The most obvious feature in the regions is the aridity index (i.e. the ratio of precipitation to potential evapotranspiration) which is lower than 0.7 in all regions (sub-humid) and around 0.3 on average (arid to semi-arid).

The discussion yielded, however, that this index cannot be seen as a pressure on water resources *per se* because aridity itself does not describe a demand for water. There might be situations where the aridity index is very low but the water demand and hence the pressure on the water resource does not exist.

With the Attica region being the only exception, the water demand is stable or increasing in all regions and dominated by conflicting consumers such as tourism and agriculture. Furthermore, the demand pattern is characterised by high seasonal fluctuations. Agriculture is the dominant water user in the specified regions (with the exception of the Cyclades).

Cost recovery is poor in most of the regions where adequate data is available. Price elasticity appears to be very small for all users.

The priorities for development in eleven of the thirteen regions are given to agriculture and tourism respectively.

The need to use more indicators to describe the typologies for the regions was discussed. A paradigm should involve demand management, developmental, environmental, economical as well as institutional and social components as stipulated by the EU Water Framework Directive.

Session 3: Towards Integrated Water Resources Management (IWRM): The range of policy alternatives

The objective of session 3 was to present the entire range of possible water management interventions in arid or semi-arid regions. These include demand reduction and supply augmentation measures as well as economic instruments to control the use of water for different users and institutional and social capacity building options.

Supply augmentation and demand reduction options can be classified into measures to increase the efficiency of existing use of water and the use of non-used resources (rain water harvesting, waste water reuse etc).

The highest potential for demand reduction is the efficiency increase for existing structures; losses in the distribution system (related to the water supplied) may amount to 40 per cent in some regions (e.g. Ribeira do Algarve in Portugal) so that a lot of water could be saved by introducing efficient leakage detection and control measures.

The efficiency of agricultural water use (being defined as the ratio that actually reaches the plant) is generally about 60 per cent in and can sharply be increased by a change to pressure systems instead of gravity systems and by simple measures such as lining of canals etc.

Economic instruments towards a sustainable use of water include economic incentives and cost recovery (taking into account economic, social and environmental impacts).

Horizontal and vertical integration, in particular for transboundary water management, was emphasised.

Session 4: Exercise 2: Outlining Water management strategies for water deficient regions

The objective of this session was to predefine the strategies applicable to the regions for the emerging paradigms. The emerging strategies will be used in the development of the decision support tool (WP 5) as well as in the formulation of general strategies, guidelines and protocols of WP 8. In particular, the strategies are relevant to the review of existing water management plans in WP 8.1.

Based on the numerous water management options presented in the previous session (including demand reduction and supply enhancement, economical and environmental as well as institutional options), a strategy has been compiled for the Cyclades in Greece. Any set of actions in the matrix can be viewed as a strategy.

	Demand management	Supply Augmentation	Environmental options	Economic options	Socio- economic options
Actions	Land use changes	GW system improvement			Confidence
	Compulsory private well metering	Rain harvesting GW recharge			Regulations

Table 1: Strategy options and actions matrix -Cyclades

f Existing Circumstances	Existing Circumstance:	
Existin	x of Existing	umstances
Existin	x of Existing	õ
Existin	x of Existing	5
Existin	x of Existing	$\underline{\circ}$
	x of	ting
	x of	
÷	ю Х	<u>.</u>
Ö	~	Exis
~	5	

Matrix of Existing Circumstances

		Attic c	Greece Thessal y	Cyclades	A krotir i	Cypru s Germasogei a	Kakkino chori a	Israe Israe	Spain Canary island s	Italy Emilia-Romagn a	Sado	Portugal Guadiana	Ribeiras do Algarve
Regional context	Climate type	Mediterranean	Mediterranean continental	Mediterranean temperate	Csa- Mediterranean	Csa- Mediterranean	C sa-Me diterranean	Dry subhumid to hvoerarid	Oceanic	sub-continenta	Cs: Mediterranean Temperate	Csa	C
	Aridity index [-]	0.31	0.2 to 0.65	0.3	0.33	0.356	0.268	0.05 to 0.5	0.2 to 0.6	~	0.54	0.46	0.68
1414-44-44-44-44-44-44-44-44-44-44-44-44	Population	3,761,810	753,848	112,615	156,000	10,000	30,000	6,200,000	1,781,366	3,924,456	292,960	182,580	324,100
	Tomboundary (mio m')	449	2094	212	20	70	20	1077	GWJ+ /0 SUIIDCE/	1914	ac hut inter heads	/ 200	020 ac leter havin transfer
	וומוצמסמוממא (וווא וווי	200	000	yes						01	tro, but itter pasit transfer	0000	
Water qualiti y	Surface water		good	n/a	very good	very good	very good	good	good	n/a	poor	ροα	poor
	Groundwater	ροα	average	poa	fair-poor	very good	fair	average-poo	average	n/a	good	ροα	poor
	coastal wat a	fair-poor	poq	good	goad	good	good		poq	n/a	good	good	good
Water supply	GW CW	17	15.7	22.5	33	15	30	57	87	34	16 2.	55.5	71.5
Percentage from	Surface water		68.3	77.5	62	50	. :	29	5	66	84	56	19.7
	Desalination and recycling			2	5	35	13	14	8	yes		0.5	
	Importing	83	16	2			57			DO			8.8
Network coverag e	Domestic	100	n/a	n/a	100	100	100	100	60	98	97	84	82
percentage	Irrigatio n		n/a	n/a	85	70	85	100	85	84	72	76	77
	Sewerage	6	99	58	75	80	70	80	09	17	87	83	73
Water us e	Domestic	1/	3.3	23	30	0.6 mio m ⁸	%9	31	27	42	24.3	14	21.8
percentage	Touris m				10	0.9 mio m ⁸	10%	4	7		0.6	1.37	10.9
	Irrigatio n	25	95.8	27	90	6.5 mio m ⁸	84%	59	58	32	441	400	305
	Industry	4	0.9					9	3	26	730.1	3.3	2.41
	Population to resources index	4494	204	531	192	1200	1000	D/U	438	494	6035	42720	1912
Water demand	Water demand trends	decreasing	stable	increasing	increasing	increasing	increasing	increasing	increasing	stable	increasing	increasing	increasing
	Consumption index [%]	09	38	U2	101	67	100%	stable urban per capita consumptin	53	001	ΑÅ	5.4	22 22
	Evolution index [%]	40 V0	31	15	001	67	300%		58	0	20	10	57
Dicipal sustam	evice household hundred for dom water		1 40	231	000	00.0	00.0	\$00	366	11 0/2	0.75%	0 80%	000%
	מים אטיייהאטוט מתמפו וטו מסוווי אטופון		147	107	5475 547110	54.5 54110	54.5 Smill 0	04¢	000 Wariaha	% II	0.0.4 Euriton 3	0.04 Er 11/20.3	0.90%
	avg nousenola buagerior agi. warer (y Ava hausehold income (fi	20639	10582	13710	0.11/m ²	0.11/m ² 24207	0.11/m ² 24207	\$36000	Variable 16800	D/U	0.00 EUI/M °	0.00 EURM - 13562	0.0/ Eulym ² 13573
					188	8 rural	urban/18488 rural			aa.			
			2004	2004	dom 0 58 full	dom 0 58 full	dom 0 58 full	Action thread chamber	000000	0/0	270/.	030/	100/
		3	pod	n 20	_	financial Ir 0.1 1 08M		Aglicaliata dentan la elastic; urban and industrial elasticities are small	abnavo	p/i	e /o	8 2	6 0
	Price elasticity	fair	poq	boa	very small	very small	very small		average	u/a	very small	very small	very small
Social capacity building	Public participation		poar	pod	fair	fair	fair	very high	poar	average	poor	ροα	poor
	Public education in water conservation	fair	average	average	fair	fair	fair	fair	poq	average	poor	ροα	poor
Woter Bessi inces	Worter ownerschi n	etota	etata	etata	stata (parth/	stata (narth)	stata (narth)	etota	GW- moethy	cipino	nublic (conthy	numblin (marthu mukumta)	nu thin (marthy miviate)
Management		5		5	private)	private)	private)	5	private; surface water: public and	2	private)		
Decision making level	Water supply for each sector	National	regional	Municipal	nationd	nationd	national	national	region-locd	regional-municipa	National/municipal	national/municipd	national/municipal
	Water resources allocation	National	national	national	nationd	nationd	national	national	regional-island	regional-municipa	nationd	national	national
	Local economy bak	tertiary sector	primary secta	tertiary sector	agri/tertiary	agri/tertiary	agri/tertiary	national	tourism	agriculture/tertiary sector	agriculture/industry	agriculture/tertiary sector	tourism
Water policy	Development priorities	urban growth	agriculture	touris m	agri/tourism	agri/touris m	agri/tourism	Recycling and	touris m	demand	industry	agri-culture	tourism and agri-culture
								desalisation		management and water water reuse			
Aridity index:		u											
resources to population index. Consumption index	iorai warer resources/population Water consumed/total water resources												

ω

icipants	
ť	
ar	
B	
\mathbf{O}	
ب	
$\overline{\mathbf{C}}$	
•	
÷	
S	
•4	

No	Name	Institution	Tel. /Fax	Email
1	Ino KATSIARDI	NTUA Greece	+30 107723303 Fax -3155	katsiard@chemeng.ntua.gr
2	George ARAMPATZIS	NTUA Greece	+30 107723135 Fax -3155	arab@chemeng.ntua.gr
с	Elina MANOLI	NTUA Greece	+30 107723135 Fax -3155	emanoli@chemeng.ntua.gr
4	Jean-Marc BERLAND	Office International de l'eau (OIEau) France	+33 555114787 Fax -748	jm.berland@oieau.fr
5	Catherine JUERY	OIEau France	+33 555114788 Fax -748	c.juery@oieau.fr
9	loannis P. GLEKAS	AEOLIKI Cyprus	+357 22354728 Fax -711	aioliki@cytanet.com.cy
7	Dominik WISSER	Ruhr-University Bochum Germany	Tel/Fax +49 2343225875	dominik.wisser@ruhr-uni- bochum.de
8	Panagiotis BALABANIS	European Commission Belgium	+32 22953630 Fax -963024	panagiotis.balabanis@cec.eu.int
6	Alessandro PERUFFO	ProGea Italy	+39 051323542	progea.srl@tiscali.net
10	Ezio TODINI	ProGea Italy	+39 051323542	todini@tin.it
11	Andreas KONTOLEON	UCL-Economics		a.kontoleon@uci.ac.uk
12	Nick PAPAEFSTATHIOU	DEYA of Paros Greece	+30 284025300 Fax -25284	
13	Vangelis PISSIAS	Technical Educational Insitute of Athens Greece	+30 972400417	vpissias@hotmail.com vpissias@teiath.gr
14	Christos KARAVITIS	Colorado State University and NTUA USA	+30 106203159	chrisk@hol.gr
15	Colin GREEN	Middlesex University UK	+44 2084115362 Fax -5403	c.green@mdx.ac.uk
16	EII FEINERMAN	Hebrew University <i>Israel</i>	+972 89489148 Fax -9466267	feiner@agri.huji.ac.il

WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

S
-
g
Δ
C
Έ
g
\sim
<u> </u>
<u> </u>
5
0
÷
S)

NO	Name	Institution	Tel /Fax	Email
17	Rodrigo MAI	University of Porto Portugal	+351 225081916	rmaia@fe.up.pt
18	Paul JEFFREY	School of Water Sciences, Cranfield University UK	+44 1234754814	p.j.jeffrey@cranfield.ac.uk
19	Christodoulos ARTEMIS	Dep. of Water Development <i>Cyprus</i>	+357 22803300 Fax –3381	waterdep@cytanet.com.cy
20	Giuseppe ORLANDO	INSULA Spain	+34 922230688 Fax –200951	insulaspain@terra.es
21	lacovos IACOVIDES	Dep. of Water Dev., Cyprus	+357 22803396 Fax -22675019	iaco@cytanet.com.cy
22	Evan VLACHOS	Colorado State University, Fort Collins USA	+1 970 4916089 Fax –2191	evlachos@engr.colostate.edu
23	George VAKONDIOS	DEYA of Hermoupolis Greece	+30281087923 Fax -88100	d-e-y-aer@etenet.gr
24	Ilias NOKAS	South Aegean Region <i>Greece</i>	+30 281082515 Fax -88750	
25	Eduard INTERWIES	ECOLOGIC, Institute for International and European Environmental Policy <i>Germany</i>	+49 308688106 Fax: -100	interwies@ecologic.de
26	Cipriano MARÍN CABRERA	INSULA Spain	+34 922230688	cmarin@insula.org
27	Manfred LANGE	Centre for Environmental Research, Univ. of Muenster Ge <i>rmany</i>	+49 2518333591 fax –6100	langema@uni-muenster.de
28	Phoebe KOUNDOURI	University College London, University of Reading UK		p.koundouri@reading.ac.uk
29	Katerina MANTZOU	University of Athens, Dep. of Economics Greece	+30 108250610	mantzou@econ.uca.gr
30	Bernand BARRAQUE	LATTS-CNRS France	+33 164153823 Fax –3847	barraque@mail.enpc.fr
31	Dionysis ASSIMACOPOULOS	NTUA Greece	+30 107723218 Fax –3155	assim@chemeng.ntua.gr
32	Katerina MAKRINOU	NTUA Greece	+30 107723303 Fax -3155	makrinou@chemeng.ntua.gr

Appendix: Individual presentations

Welcoming Session

1 Welcoming Partners and Workshop objectives (D. Assimacopoulos)

Session 1 - The range of existing circumstances in water deficient regions

- 2 Greece (I. Katsiardi)
- 3 Italy (A. Peruffo)
- 4 Israel (E. Feinerman)
- 5 Spain (C. Marin)
- 6 Cyprus (I. Glekas, I. Iacovides)
- 7 Portugal (R. Maia)

Session 2 - Exercise 1

8 Constructing a Typology of Water Deficient Regions (All participants. Moderator: D. Assimacopoulos)

Session 3: Towards Integrated Water Resources Management: The Range of Policy Alternatives

- 9 Demand Reduction and Supply Augmentation Options (E. Todini)
- 10 Competing water uses and economic instruments (B. Barraqué)
- 11 Environmental economic instruments (E. Intervies)
- 12 Social Capacity Building and Institutional Options (E. Vlachos)

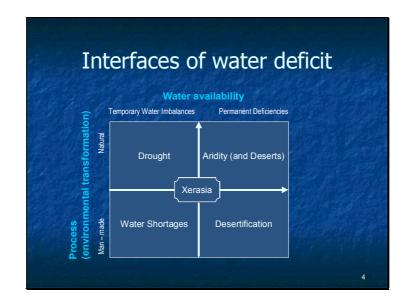
Session 4: Exercise 2

13 Exercise 2: Outlining Water Management Strategies for Water Deficient Regions (all participants (Moderator: C. Karavitis)

Developing Strategies for Regulating and Managing Water Resources and Demand in Water Deficient Regions

- Acronym: WaterStrategyMan
- Key concepts
 - Strategies
 - Regulation
 - Water deficient regions

WSM


WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

WSM Objectives

- To explore alternatives for:
 - Regulating and managing water resources in water deficient regions
- Select representative water deficient regions and provide concrete examples of implementation /evaluation steps
- Develop and evaluate strategies for an IWRM
- Develop methodology, tools, guidelines and protocols of implementation for decision makers

3

Workshop objectives

Present and discuss:

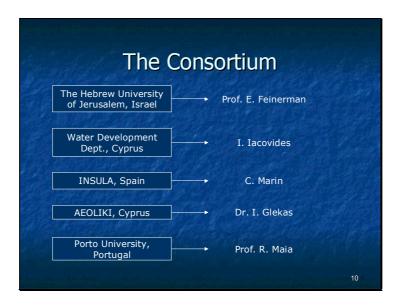
- Results on the water deficient regions
- Requirements for the definition of a consistent typology of water circumstances
- The water resources context and conditions vs. responses and instruments

Evaluate:

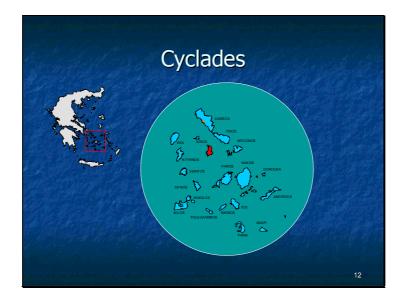
• The water related problems, in relevance to the needs of the regions involved in the participating countries

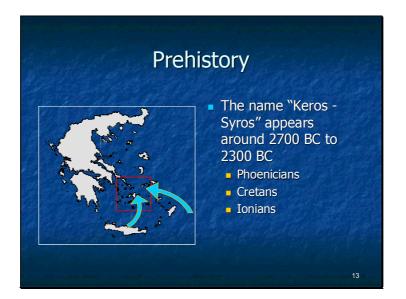
5

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

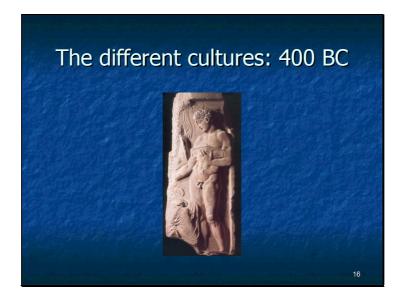


Pro	gramme
Opening Session: Welcome and Workshop objectives SESSION 1: The range of existing circumstances in water deficit regions 9.40-10.00 Greece 10.00-10.20 Italy 10.20-10.40 Israel 10.40-11.00 Spain 11.00-11.20 Coffee Break 11.20-11.40 Cyprus 11.40-12.00 Portugal	Support Augmentation Options Support Augmentation Support Augment Augment Augmentation Support Augment Augment Augment Support Augment Augment Support Augment Support Sup
SESSION 2: Exercise 1: Construct a Typology of water deficient regions	deficient regions ing 17.30-18.00 All participants 18.00-19.00 Discussion 19.00 End of Workshop



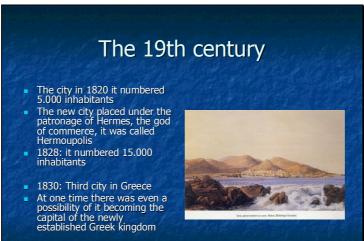






From 1204 until 1566 the

- island Syros, like all the Cyclades, was taken by the Venetians, who spread Roman Catholicism
- The medieval city of Ano (Upper) Syros was built in the 13th century


The 4th Crusade

- the Turks in 1537
- It continues flourishing because it retained numerous privileges thanks to the influence of its Catholic inhabitants and also because the "Capitulation" agreed between Francoise and the Sultan

The 19th century

- Crossroad: Athens, Istanbul, Alexandria and the other ports of the Levant
- In 1821, thousands of Greeks, who were driven out of Chios and other Aegean islands by the Turks, found refuge on the then uninhabited shores of Syra Bay

19

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

The 20th century

- After the war: Local population does not immigrate
- New standards of living create new water demands
- 1965: The first desalination unit (evaporation process) is built in the shipyard

22

WP1 Report on Circumstances - Greece

Ino Katsiardi Chemical Engineering Department, National Technical University of Athens, Greece

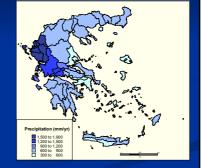
Overview of the country

Physical Characteristics

Climate

- Mediterranean
- Precipitation varies from 200mm to 2150mm
- Geomorphology
 - Mostly mountainous
 - Extended coastline
- Geology
 - Mainly limestone and sedimentary rocks

- Ground Water
 - Many aquifers
 - Estimated amount 10,300 hm³/year.
- Surface Water
 - 765 recorded streams, of which
 45 perennial
 - Four transboundary rivers
 - 60 lakes, 3 transboundary
- Surface Water storage features
 - Dams, reservoirs



Issues in Water Management

- Seasonality of demand
 - Tourism, peaks in the summer
 - Agriculture, peak demand in the dry season
- Main user: agriculture, highly dependent on irrigation
- Uneven distribution of resources
- Uneven distribution of population
- Overexploitation and salinisation of underground aquifers
- Dependence on transboundary waters flowing from non EU regions - About 14 km³/y (30% of total average annual water resources) originates outside the country
- Increasing frequency of droughts and torrential rains in recent years

Precipitation

 Precipitation is high in the northwestern part of the country, and low in the islands and eastern part of the country

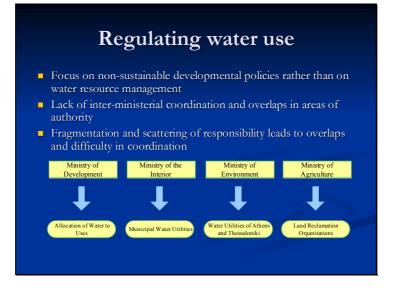
 Potential evapotranspiration is very high, particularly in regions with low precipitation

Uneven distribution: Total Resources

- The richest departments:
 - West Sterea Ellada
 - Epiros
 - West and Central Macedonia
 - Thrace
- The most deficient
 - regions:
 - Southern Aegean Islands
 - Attica
 - East Peloponnesus

The Human Factor

- Consumption index: Water consumed / Total Water Resources
- Attica has the higher consumption index due to the large domestic needs
- Aegean Islands face seasonal water shortage problems



Water quality and Pollution

- Influx of pollutants through transboundary rivers
- Domestic effluents and agrochemicals are major sources of surface and groundwater pollution
- Coastal waters are of good quality, except where effluents from the larger cities are discharged
- Runoff during flooding
- No effluent charging systems

- Foreign Ministry

- Local Authorities Provision of water services and creation of Water utilities

WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

Regional level of administration

 Mostly overlapping with the hydrological departments

Selection of Candidate Regions

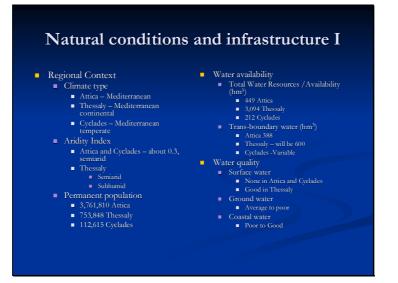
Aridity Index by Region

The most arid Regions:

- Attica
- Thessaly
- The Aegean islands and the southern part of Crete

Selected Candidate Regions

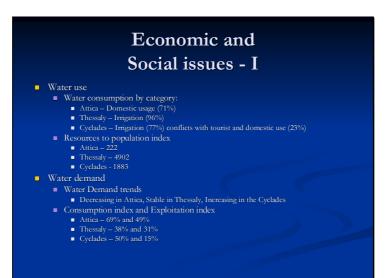
- Attica
- Thessaly
- The Cyclades Islands

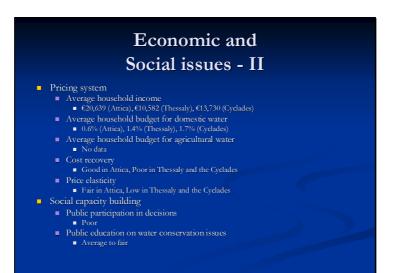

Reasons for the Selection

Attica

- water deficit is permanent, caused by increased domestic demand
- Thessaly
 - water deficit is seasonal, caused by demand for irrigation
- Cyclades islands
 - water deficit is seasonal, caused by an influx of tourist population
 - severe conflicts with use for irrigation

Range of Circumstances -Region Characteristics




Natural conditions and infrastructure II

Water Supply

- Supply coming from:
 - Attica mainly imported (83%)
 - Thessaly mainly surface water (68%)
 - Cyclades Variable; overall, mainly surface resources (77%)
- Network coverage
 - Attica 100% water supply, no data on irrigation and sewerage
 - Thessaly No data
 - Cyclades No data

- Water Resources Management
 - Water ownership
 - State ownership
 - Decision making level (municipal, regional, national) regarding:
 - Water supply for each sector:
 - National in Attica, Regional in Thessaly and Municipal in the Cyclades
 - Water resources allocation for each sector is National
- Water Policy
 - Local economy basis
 - Primary Sector in Thessaly, Tertiary sector in Attica and the Cyclades
 - Development priorities
 - Infrastructure (Attica), Agriculture (Thessaly), Tourism (Cyclades)

Attica

- Greek capital district
- Area: 3,207 km² (3,761,810 inhabitants)
- The region produces 36% of the GNP, mostly on tertiary sector activities
 - Economic activities are commerce, industry, agriculture and tourism
- Per capita product is €12,560
- Mean declared income per inhabitant €6930 in 2000
- 10.4% unemployment rate

Attica

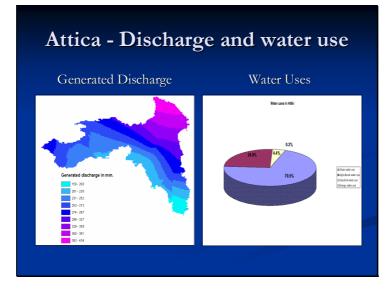
- Attica WRM is under the direct control of the Ministry of the Environment
- Two main rivers, Illissos and Kifissos, but with little flow, highly polluted
- Total water availability 449 hm³ vs. total annual water demand of 408 hm³
 - Significant water quantities imported from Sterea Ellas Regions
- Drought periods in the 1990's introduced the need for
 - Pricing control of demand
 - Public awareness campaigns
- Only part of Greece where demand management through pricing control has been effective – EYDAP S.A.

Thessaly

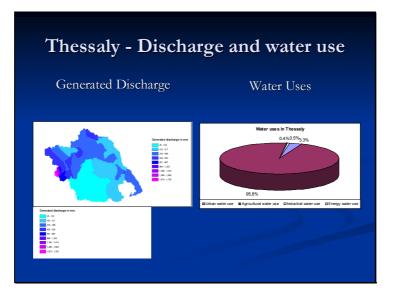
- Area: 13,377 km² (753,848 inhabitants)
- The region produces 6.3% of the GNP
- Mean declared income per inhabitant €3550 in 2000
- Per capita product is €10,950
- 12.2% unemployment rate
- One main river, Pinios , and two major lakes, Lake Plastira and Lake Karla
- Total water availability 3,094 hm³ vs. total annual water consumption of 1,171 hm³
- Planned transfer of 600 hm³ yearly from the Acheloos watershed
- Water shortage problems occur during the irrigation period, while in the winter floods occur in large areas

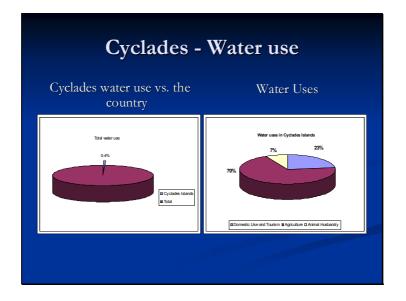
Thessaly

- Mostly Agricultural area
- Includes Larissa and Volos Large urban centres with significant Industrial units
- Regional authorities encourage tourism development
- Water supply is not regulated by a single authority
 - The larger cities each have their own services providers
 - There is a number of independent local services, mostly through the municipalities
 - Pricing of water is a subject of political pressures
 - Cost recovery is on average poor
- Public discontent about current management framework


Cyclades

- Area: 2,553 km²
- 24 inhabited islands (112,615 inhabitants)
- The region produces 1% of the GNP
- Per capita product €12,330
- 12% unemployment rate
- Mean declared income per inhabitant €4600 in 2000
- No major (permanent) surface water resources
- Total water availability 212 hm³ vs. total annual water demand 30.95 hm³
- Water shortage problems occur during the summer period in some islands at peak season, the tourist population can be 30x the local population

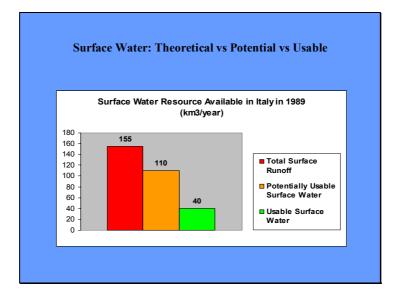



Cyclades

- In some islands overexploitation of the underground aquifers has led to salinisation
- Major water consumer is agriculture, while the major economic activity is tourism - conflict
- Desalination plants are used to cover water demand in some islands and in others water is imported with tankers
- Several small (local) water services suppliers, mostly municipalities or municipal water authorities
- Pricing of water is subject to political pressures

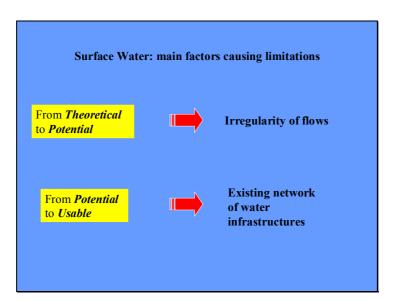
WaterStrategyMan EVK1-CT-2001-00098

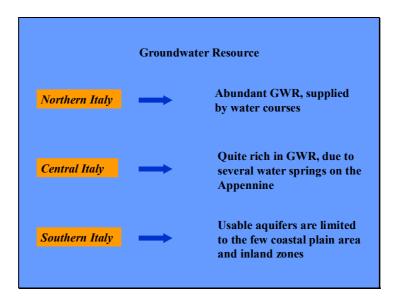
Report on Italy:

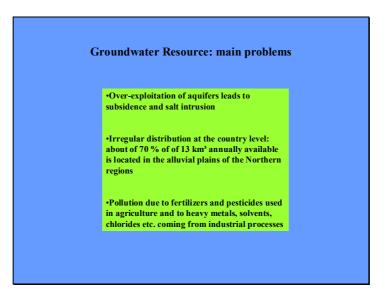

Range of Existing Circumstances and Region Analysis

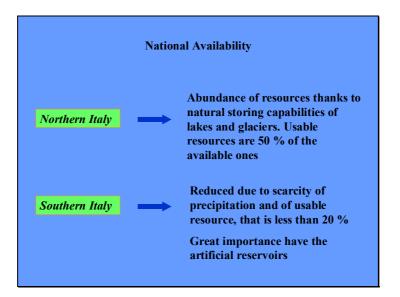
Report on Italy - Part 1

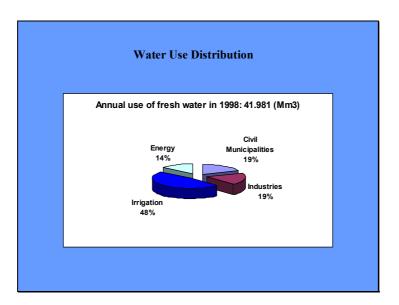
Country Overview

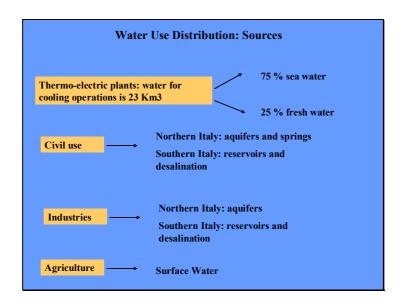


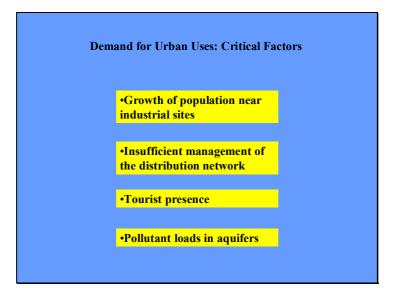

WATER DEMAND AND SUPPLY STATUS

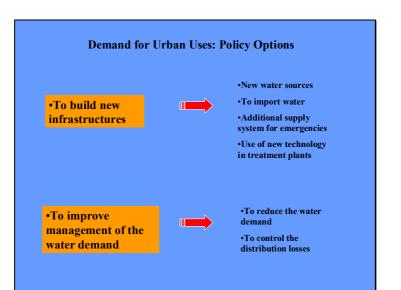

WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

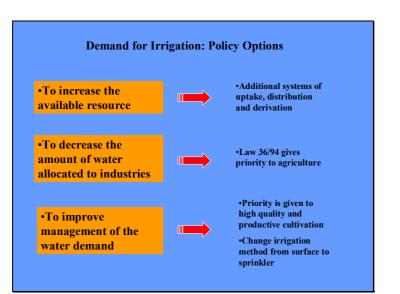


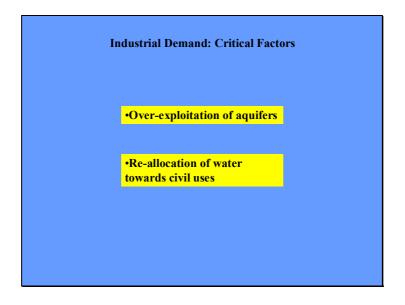


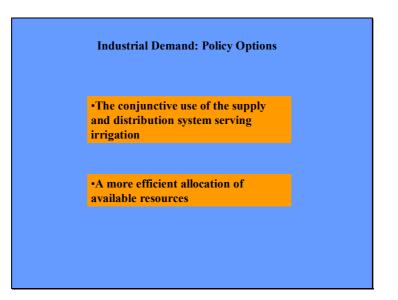


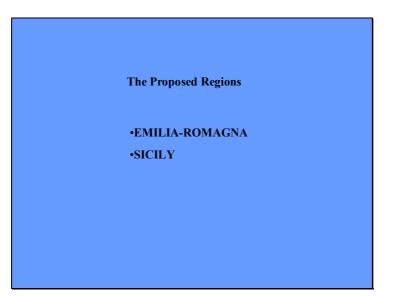






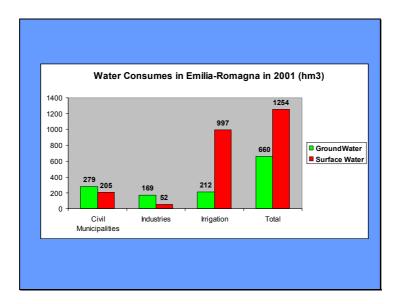


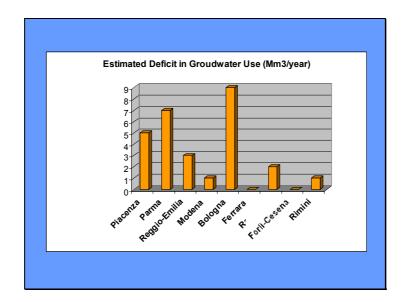

D	emand for Irrigation: Critical Factors	
	•Water requirements not completely covered	
	•Droughts	

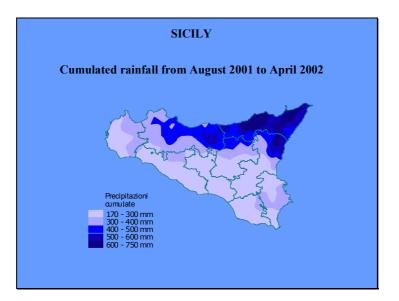


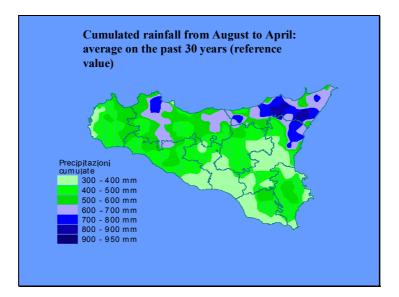
Report on Italy - Part 2

Proposed regions



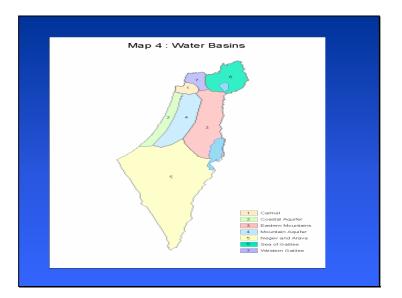






AREA	2000	2001	TREND % (2001-2000)	DIFF.
Adriatic Coast	39.475.00 0	40.690.000	+3,1%	+1.125.00
Appennine	2.812.000	2.835.000	+0,8%	+23.000
Cities	3.403.000	3.480.000	+2,3%	+77.000
Watering places	1.994.000	2.025.000	+1,6%	+31.000
Total	47.684.00 0	49.030.000	+2,8%	+1.346.00

7



June 2002

Country Profile

- Area: 22,145 square kms.
- Length: 429km. Width: varies between 16 to150 km.
- Population: 6.4 million (90% live in urban areas).
- GDF per capita: 17,500 dollars.
- Climate: a short, cool and rainy winter and a long, hot dry summer.

Rainfall is poorly distributed: varies from 700 mm annually in the north to about 30 mm annually in the south.

Spatially Variable Aridity Index (AI)

- (1) 0.5 0.65 (Dry sub humid lands): Coastal Plain, the Northern Valley and the Galilee.
- (2) 0.2 0.5 (Semi arid) the Northern Negev, Northern Jordan Valley, Kinarot and Hula Valleys.
- (3) 0.05 0.2 (Arid) Western Negev, Be'er Sheva Valley, Southern Jordan Vallry.
- (4) > 0.05 (Hyperarid) Southern Negev, Dead Sea Basin, Arava Valley.
 - Approximately half of the area of Israel may be considered practically a dry desert.

Basic Existing Conditions

of Israel's Water Economy

- <u>General</u>: Very developed water economy (technologically & economically)
 - Severe crisis
- Main features of the crisis
 - Freshwater deficit
 - Shortage for agricultural uses
- Deterioration of fresh water quality
- Environmental crisis:
 - Corving up of rivers and lake
 - < Contamination of rivers

- Over pumping of fresh sources (more than natural recharge)
- Causing increasing salinity (from the sea and saline springs)
- Climatic changes: trend of decline of natural renewal of aquifers
- Hydro politics
- Population and economic growth: growing households & industrial demand
- Neighboring entities' demand

Factors Contributing to the Crisis

- Unsettled conflict about allocation scheme to agricultural sector, administrative vs. pricing
- Regulator's weakness
- Inefficient governmental allocation schemes
- Slow transfer from fresh to recycled water for agricultural irrigation
- Lack of awareness and enforcement of environmental ecological concerns
- Over-bureaucracy of regulating systems

- There is no private ownership of water in Israel. All water is publicly owned and its utilization controlled by the Water Commission.
- Allocation is administrative: the Commission issues permits for production (extraction) to suppliers as well as allocations (quotas) for consumers.
- Trading in water quotas is forbidden.

Pricing Practices

• Water prices are uniform throughout the country, varying only by sector and quality. Prices for agricultural use are lower than prices for industrial and urban use. Prices for brackish water are lower than prices for fresh water.

• Tiered pricing is levied on agricultural users.

Agricultural : f	resh	0.22	(average)
- r	ecycled	0.12	
Municipalities :		0.35	
ndustrial uses :		0.30	

- Water prices for water delivered by the national company, Mekorot, are determined by the government in a process open to political pressure (skillfully applied by the agricultural lobby).
- Private water suppliers set prices with little government interference.
- Extraction Levy: new form of "scarcity prices" aimed at reflecting the "scarcity value" of water in the ground water aquifers.
- Prices charged by Mekorot on agricultural users are subsidized, with the government covering approximately 20% of the cost of supplying the water.

Israel: One Water Region

In principle, Israel should only be examined as a single geographic entity, for the following reasons:

- The National Water Carrier (NWC) connects all major sources of freshwater into a single network. In addition to this, there are some additional major pipelines connecting various regions.
- Recycled water. The Shafdan, a plant for the treatment of urban and industrial effluent of the greater Tel Aviv metropolitan area, is responsible for transferring recycled water to the southern region for agricultural use.

• Pricing policy. Water prices by quality and sector (agricultural, industrial, urban) are more or less uniform throughout the country.

• Water administration is highly centralized, with utilization controlled by the Water Commission. Some 60% of the water in Israel is supplied by the national water company, Mekorot, (wholly owned by the government), which is also the sole owner of the National Water Carrier and the Shafdan.

Long-term Average Fresh Water Sources

Basin	Average Annual		
	Recharge (MCM)		
Coastal Aquifer	300		
Mountain Aquifer	360		
Sea of Galilee	550		
Other basins	<u>280</u>		
• TOTAL	1490		

<u>General Water Supply Balance</u> (MCM/year) ¹				
	Normal year (1998)	Crisis year (2002, estimate)	Future average Year (2010)	
Aquifers (including saline)	1975 (88%)	1432 (82.5%)	1398 (60%)	
Desalination	_	5 (0.5%)	500 (19%)	
Recycled	276 (12%)	298 (17%)	509 (21%)	
TOTAL	2251	1735	2407	

Water Demand by Sector (MCM/year)¹

	1	998		002 mate)		010 ected)
Domestic	694	31%	680	39%	875	36%
Industrial	129	6%	131	8%	167	7%
Agricultural	1326	59%	837	48%	1165	48%
Environment	4		2		40	2%
Jordan & PA	98	4%	85	5%	160	7%
TOTAL	2251	100%	1735	100%	2407	100%

The Salinity Problem

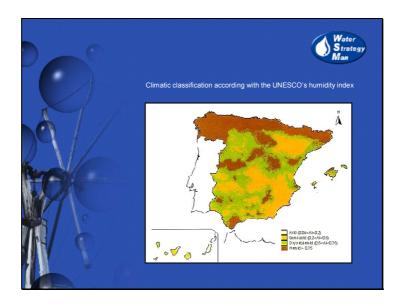
> Local spots of brackish water in certain regions, which together amount to about 160 mcm per year.

>Long run trend of increasing salinity over time in most natural water sources. This process results from a few factors:

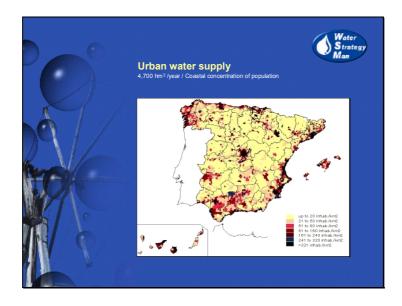
- Reduction of natural drainage and natural salt reaching the sea, due to the very intensive exploitation of Israel's water sources.
- Intrusion of seawater in some locations along the coastal plain.
- Import of salts with irrigation water from Lake Kinneret to the regions served by the National
- Irrigation with treated wastewater.

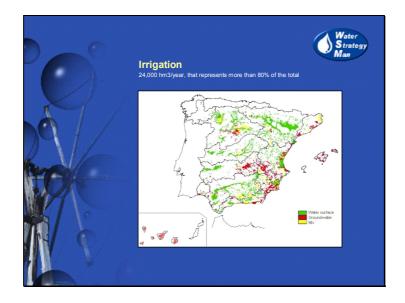
The New Strategy (Adopted in Principle)

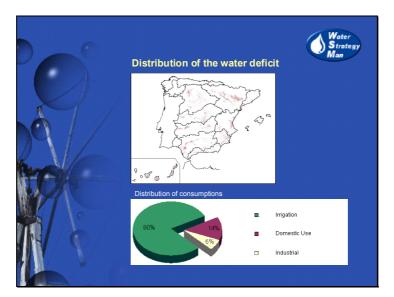
- Intensive desalination
- Agricultural shift to recycled water
- Higher quality of treated effluents
- Water allocation for agriculture: more by prices, less by quota (Price Reform)
- Privatization (especially of new facilities), B-O-T
- · Increased attention for environmental benefits

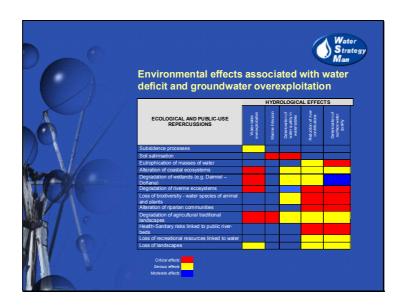


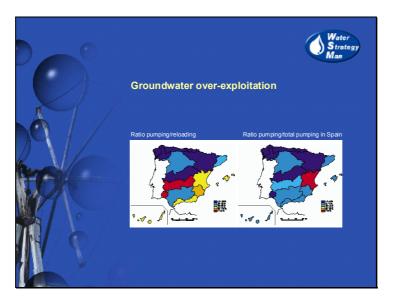
Israel's Water Economy: Major Conflicts

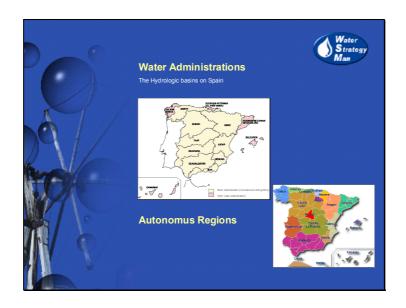

- Competition between the urban and the agricultural sectors on the limited resources of freshwater.
- Competition between farmers in the peripheral areas of Israel for recycled wastewater.
- Conflict between the agricultural and the urban sectors on the purification standards for disposal set for the cities by the government. Who pays for quality up-grade?
- Privatization of water supplies is a potential source of conflict between the government-owned company, Mekorot, and private entrepreneurs.
- Conflicts between Israel and the Palestinian Authority on the utilization of the Coastal and the Mountain ground water aquifers

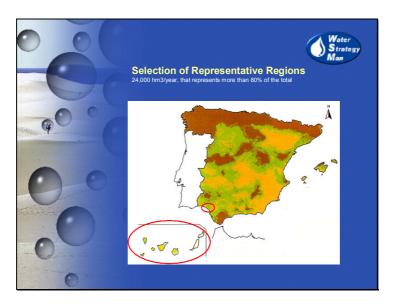


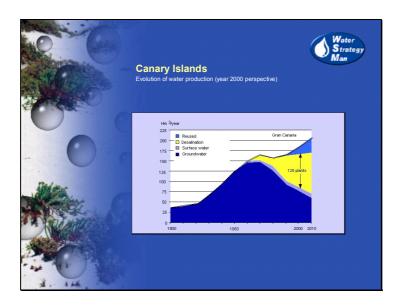




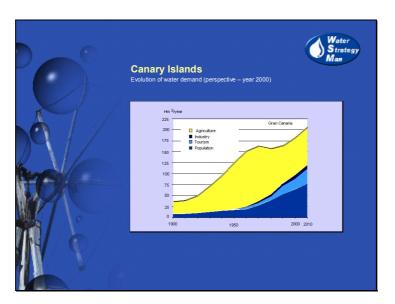


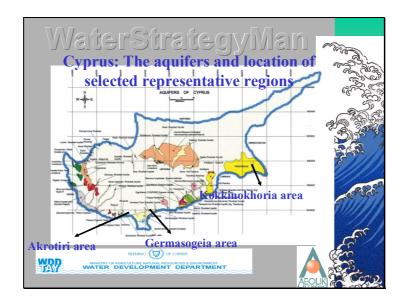


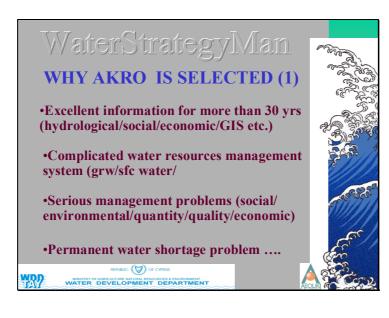


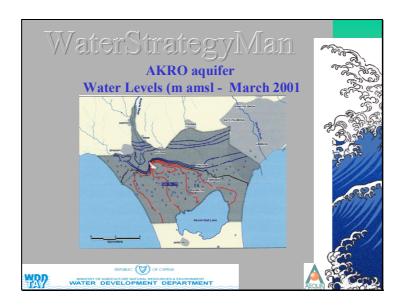

	Institucional fra	amework	Man
	Responsibilities	Agency/Authority	
	Planning Regulations	Ministry of Environment Water National Council (Consultative) Basin Administrations (Contered gradiones Hidrogatárcas) Autonomous Regions (A. R.)	
	Administration and control of the hydraulic public dominion.	Basin Administrations (Confederaciones Hidrográficas) Autonomous Regions (Internal river basins)	
29/-	Domestic and urban	Ministry of Environment Ministry of Industry Ministry of Health and Consumption. Bisch Administrations Health Administration (A.R.) Industry Administration (A.R.) Environment In Administration (A.R.) Deutacones Provincialis Minicipalities as final administration in charge	
HA A	Irrigation	Ministry of Agriculture Ministry of Environment Autonomicus Regions Comunidades de Regantes	
	Infrastructures	Ministry of Environment Basin Administrations (Confederaciones Hidrogaficas) State Water Society Autonomous Regions	
N O	Purificatin and Re-use	Ministry of Environment Ministry of Development Ministry of Hoeklah and Consumption. Baan Administration (A, R) Heath Administration (A, R) Environment Administration (A, R) Diputaciones Provinciales Minicipalities as final administration in charge	
	Hydroelectric uses	Ministry of Environment Ministry of Industry and Energy Basin Administrations Autonomous Regions	

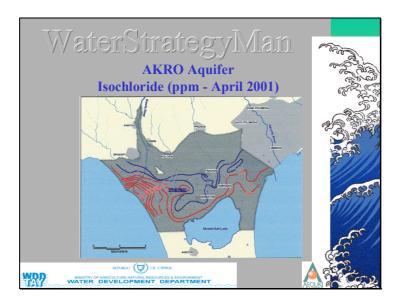
	Water Strategy Man
	National Hydrological Plan
A	strategic options
$\mathbf{P}\mathbf{q}$	· Programmed reduction of demand.
R	· Large-scale desalination.
	· Inter-river basin transfers







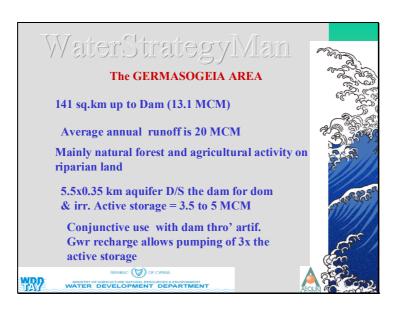




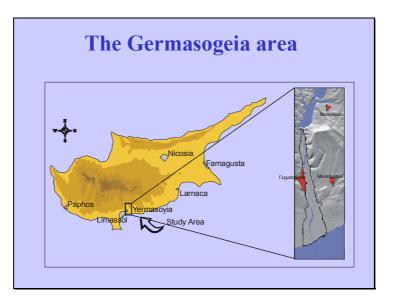
WaterStrategyMan								
AKI	AKRO Area Matrix (1/6)							
Regional	Cli	mate Type	Csa-Med/nean	J. S.				
Context	Ari	dity Index	Semi-arid (0.330)					
	Per	manent Popul.	156000	E				
Water availabilit	1,	Total	30 Mm3	er le ce				
	y	Trans- boundary		E.				

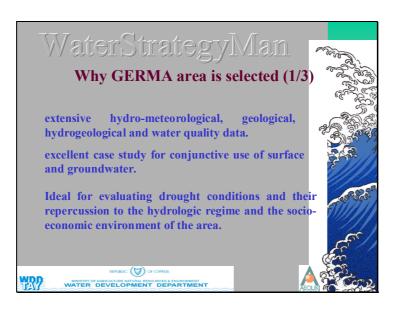
ai K	erStrateg RO Area Mati	yMan fix (2/6)	and a series of the series of
Qua	lity of sfc water	Very Good	
Qua	lity of gwt	Fair - Poor	
Qua	lity of coastal water	Good	
	Groundwater	33%	
	Surface-water	62%	111/
	Recycling	5%	-50
	Importing	-	erc'
	K Qua Qua Qua	KRO Area Math Quality of sfc water Quality of gwt Quality of coastal water Groundwater Surface-water Recycling	Quality of gwtFair - PoorQuality of coastal waterGoodGroundwater33%Surface-water62%Recycling5%

Water AKR	Strategy O Area Ma	vMan atrix (3/6)	
Water Supply:	Domestic	100%	CALL OF CALL
Network	Irrigation	>85%	- S.
coverage	Sewerage	Apx. 75%	C. S. S.
Water use:	Domestic	30%	144 A
consumption	Tourism	10%	
by category:	Irrigation	60%	asee eee
	Industry/	-	
	energy prod.		Er
	Resources to	192 m ³ /c	(And Constant)
WATER DEVELOI	pop/tion index	AFOLIK	

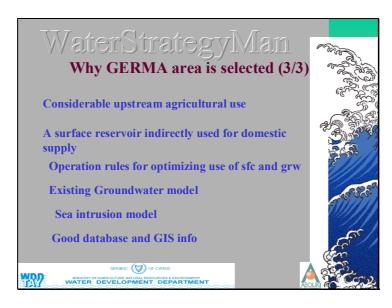


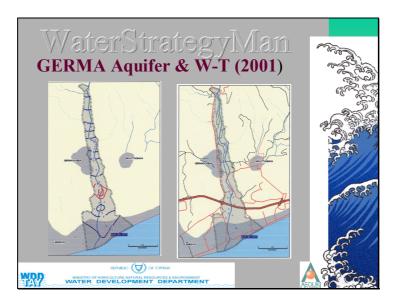
s W	iterStrategy AKRO Area M	yMam atrix (4/6)	
Water	Water Demand trends	Increasing	
demand	Consumption index	100% Incr/ing	
	Exploitation index	100% Incr/ing	Sec.
Social Capacity	Public participation in decisions	Fair	1999
building	Public education on water conservation	Fair	
	issues		erc l


Wa	WaterStrategyMan AKRO Area Matrix (5/6)						
Pricing	Average household	€ 99.2/yr					
system	budget for dom. water						
	Ave. household budget	€0.11/m ³ depends	C. B. Start				
	for agricultural water	on land	268				
	Ave. household income	€24207urban	3				
		€18488 rural	2029				
	Cost recovery	Dom €0.58/m³	C. C. S. C.				
		Full Financial					
		Irrig. €0.11	Sec				
		O&M	én				
	Price elasticity	Very small					
	IESTRY OF AGRICULTURE NATURAL RESOURCES & ENVIRONMENT	AEOLIK	Per Con				



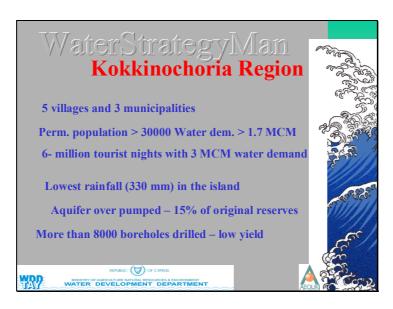
	Strategy O Area Ma		
Water	Water	State- (partly	(MA)
Resources	ownership	private)	
Management	Decision making level	National	
	Water allocation per sector	National	
Water Policy	Local economy basis	Agri/tertiary	C.C.C.
	Development priorities	Agri/tourism	





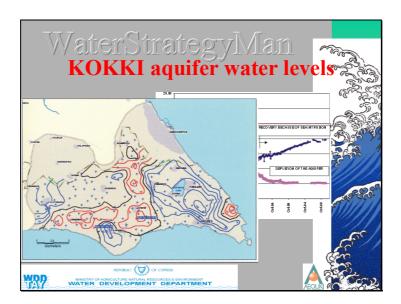
Why GERMA area is selected (2/3)								
14 villa	age com	munities	s(12 U/	S dam) y	within v	watershe	ed	(Fr
Germaso geia Watersh	AN	NUALLY		EASONA hectares			ED CRO	OPS
ed (in	RIV	/ER	SPRINGS		WEL	LS/BH	TOTAL	
relation to Dam)	Area	Water Use	Area	Water Use	Area	Water Use	Area	Water Use
Up/st	295	2.5	78	0.8	16	0.2	386	3.5
D/stream	304	3.0					304	3.0

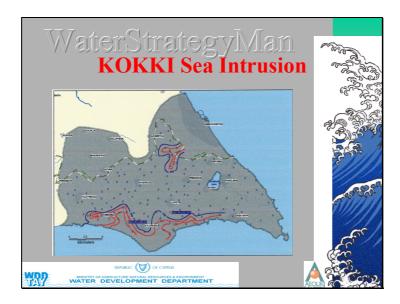
₩aít GERM		Strategy OGEIA Ar (1/4)	7Mam ea Matrix	
Regional	Cli	mate Type	Csa- Med/ean	
Context	Ari	dity Index	Semi-arid (0.356)	Sec. 1
	Per	manent Popul.	10000	
Water availabilit		Total /available	20/12 Mm ³	
Trans- boundary				C.C.
				Per se



	7 BLI BEF	erStrateg MA Area Ma	yMam trix (2/4	100 000 000 000 000 000 000 000 000 000
Water	Qua	lity of sfc water	Very Good	
quality	Qua	ality of gwt	Very Good	
	Qua	ality of coastal water	Good	
Water	1	Groundwater	15%	
Supply		Surface-water	50%	0))///
% from	1	Desal/Recycling		<u> </u>
		Exporting	35%	and the second
WDD				

WaterS GERM	Strategy MA Area M	/Man fatrix (3/4)	and the second
Water Supply:	Domestic	100%	and the second s
Network	Irrigation	>70%	CRA ST
coverage	Sewerage	Apx. 80%	B.S.
Water use:	Domestic	0.6 Mm ³	EES?
consumption	Tourism	0.9 Mm ³	e
by category:	Irrigation	6.5 Mm ³	ALCON CONTRACT
	Industry/		
	energy prod.		Er
	Resources to	1200 m ³ /c	(And a larger of the larger of
	pop/tion index		

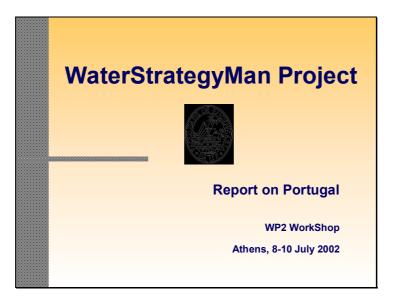

BW	iterStrategy GERMA Area N	yMam Aatrix (4/4)	
Water	Water Demand trends	Increasing	(Carlos
demand	Consumption index	67% incr/ing	
	Exploitation index	67% Incr/ing	S. C.
Social Capacity	Public participation in decisions	Fair	69928
building	Public education on water conservation	Fair	E.

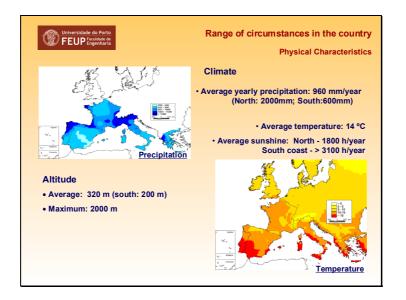


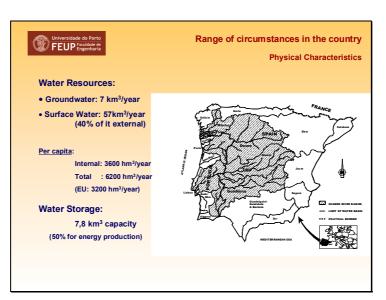
-	WaterStrategyMan KOKKINOCHORIA Area Matrix (1/4)							
	Regional	Cli	nate Type	Csa-Med/nean				
ľ	Context	Ari	dity Index	Semi-arid (0.268)	S.S.S.			
		Per	manent Popul.	30000	100 PC			
	Water availability		Total /available	30 Mm ³ **				
	a ranaonn _.	V	Trans- boundary		S.S.S.			
WAY	MINISTRY OF				Per con			

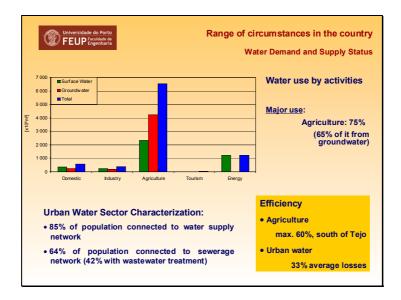
V K	⁷ สม์ KO	terStrateg KKI Area Ma	yMan trix (2/4	al and a start of the start of
Water	Qu	ality of sfc water	Very Good	100 A
quality	Qu	ality of gwt	fair	
	Qu	ality of coastal water	Good	
Water		Groundwater	30%	
Supply		Surface-water	-	100/1/
% from	1	Desal/Recycling	13%	50
		Exporting	57%	and a
WRD				

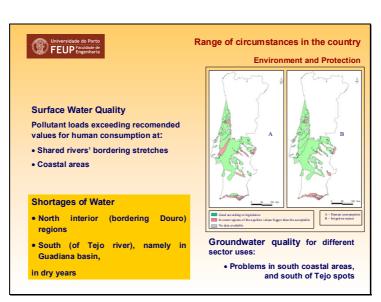
Water	Strategy KI Area M	z Zatrix (3/4)	and the second
Water Supply:	Domestic	100%	
Network	Irrigation	>85%	- Cana
coverage	Sewerage	Apx. 70%	A ROAD
Water use:	Domestic	6%	Res /
consumption	Tourism	10%	e
by category:	Irrigation	84%	199998
	Industry/		£))////
	energy prod.		Fr
	Resources to	1000 Mm ³ /c	(ACC)
W	pop/tion index		and the second

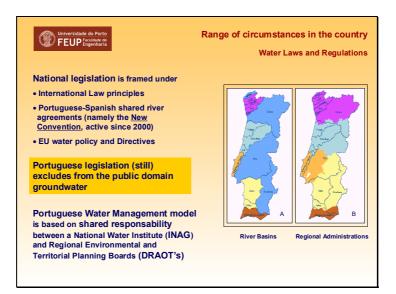

8	iterStrategy KOKKI Area M	yMam Iatrix (4/4)	
Water	Water Demand trends	Increasing	Contraction of the second s
demand	Consumption index	100%Incr/ing	
	Exploitation index	300%Incr/ing	
Social	Public participation in	Fair	
Capacity	decisions		a contraction
building	Public education on	Fair	
	water conservation		Sec
	issues		in
	REPUBLIC O OF CYPRIS STRY OF AGRICULTURE NATURAL RESOURCES & ENVEROMMENT ER DEVELOPMENT DEPARTMENT		

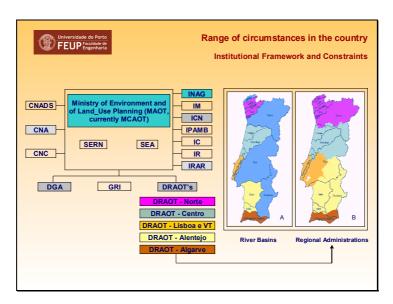


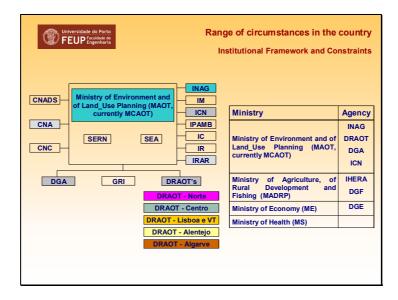


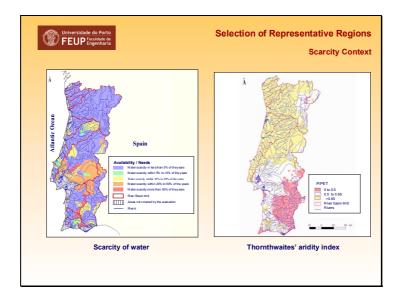


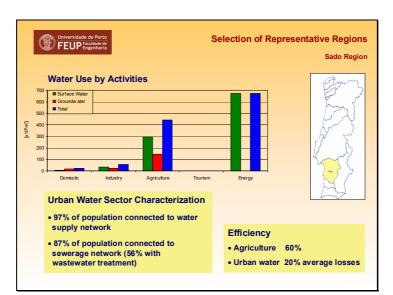


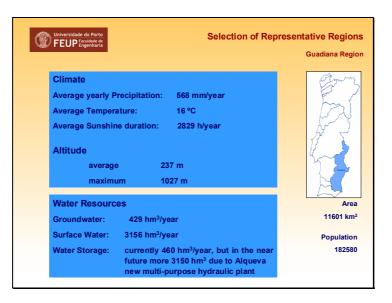


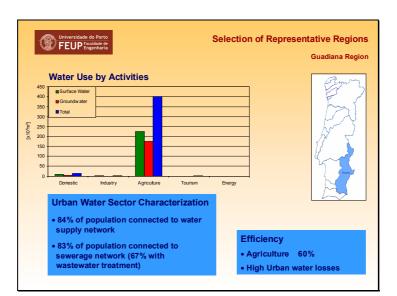


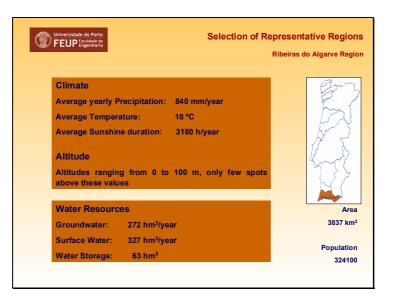


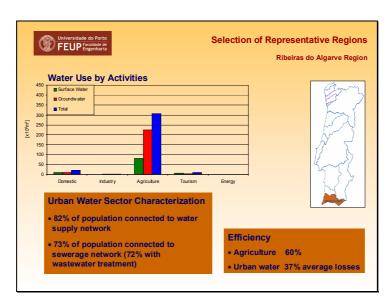



Universidade do Porto FEUP Faculdade de Engenharia	Range of circumstances in the coun
	Constrai
Category	Constraints
Natural	Uneven spatial and temporal <u>water resources distribution</u> Large dependence on transboundary water
Human	Uneven population distribution Tourism pressure located on coastal areas Agriculture water use Demand peaks on the dry season
Technical	Old <u>agriculture infrastructure</u> Big <u>water supply</u> network <u>losses</u>
Juridical	<u>Water resources laws</u> very often <u>ineffective</u> Overlapped and no <u>co-ordinated institutional responsibilities</u> <u>No</u> actual <u>national Water Law</u>
Financial	<u>Non effective</u> economic and financial <u>regime</u> <u>Pricing of water</u> distorted and largely subsidised
Administrative and Institutional	<u>Management</u> of water resources <u>not</u> made on a <u>River Basin basis</u> <u>No</u> real <u>National Water Authority</u> Incipient participation of Civil Society






Universidade do Porto FEUP Eculado do FEUP Eculado do	f Representative Regions Sado Region
Climate Average yearly Precipitation: 622 mm/year Average Temperature: 16 °C Average Sunshine duration: 2900 h/year Altitude average 127 m maximum 501 m	
Water ResourcesGroundwater:796 hm³/yearSurface Water:918 hm³/yearWater Storage:771 hm³/year	Area 8295 km² Population 292960



W FE	EUP Faculdado de Engenharia	Gerection		tative Region Summary Matr
Natural co	nditions and infrastructure	Sado	Guadiana	Ribeiras do Algarve
Deviewal	Climate Type	Cs: Mediterranean Temperate	Csa (Temperate)	Cs: Mediterranear Temperate
Regional Context	Aridity Index	Al =0.54 Dry Sub- humid	Al =0.46 Semi- Arid	AI =0.68
	Permanent Population	292,960	182,580	324,100
	Total Water Resources/ Availability (hm ³)	1768 /1714	7800 (2300)	620 /599
Water	Trans-boundary water	No	5500	No
availability	Inter-basin water transfer	Yes(-2 hm ³ -10 hm ³)	Yes (2 hm ³ -30 hm ³)	Yes (30 hm ³)
	Quality of surface water	Poor	Poor	Poor
Water	Quality of groundwater	Good	Poor	Poor
quality	Quality of coastal water	Good	Good	Good
Water	Percentage of supply coming from: Groundwater Surface water Desalination, Recycling Importing	16% 84% - -	55.5% 56% - 0.5%	71.5% 19.7% - 8.8%
Supply	Network coverage: Domestic Irrigation Sewerage	97% 72% 87%	84% 76% 83%	82% 77% 73%

	ade do Porto Select Engenharia	tion of Rep	·	nary Matri
Economic and S	Social System	Sado	Guadiana	Ribeiras de Algarve
Water use	Water consumption by category: (hm ³) Domestic Tourism Irrigation Industrial and energy production	24.3 0.6 441 730.1	14.0 1.37 400 3.3	21.8 10.9 305 2.4
	Resources to population index	6035	42720 (12600)	1912
	Water Demand trends	Increasing	Increasing	Increasing
Water demand	Consumption index	68%	5.4% (18.2%)	55%
	Exploitation index	70%	12%	57%
	Average household budget for domestic water	0.75%	0.89%	0.90%
	Average household budget for agricultural water	0,06 €/m³	0,06 €/m³	0,07 €/m³
Pricing system	Average household income	13562 €/year	13562 €/year	13573 €/yea
	Cost recovery	Low (37%)	Low (23%)	Low (40%
	Price elasticity	Very small	Very small	Very smal
Social capacity	Public participation in decisions	Poor	Poor	Poor
	Public education on water conservation issues	Poor	Poor	Poor

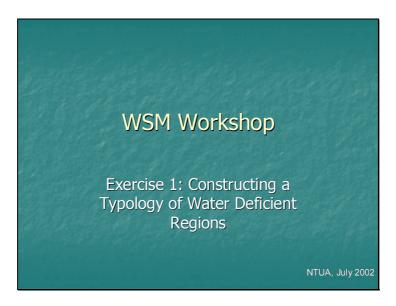
Universidade do Porto FEUP Faculdade de Engenharia		Selection of Representative Regions			
			·	Summary Matrix	
Decision Making F	Process	Sado	Guadiana	Ribeiras do Algarve	
Water Resources Management	Water ownership	Public (partly private)	Public (partly private)	Public (partly private)	
	Decision making level (municipal, regional, national) regarding: Water supply for each sector	National/Municipal	National/Municipal	National/Municipal	
	Water resources allocation for each sector	National	National	National	
	Local economy basis	Agriculture and industry	Agriculture and Tertiary sector	Tourism	
Water Policy	Development priorities	Agriculture	Agriculture	Tourism and Agriculture	

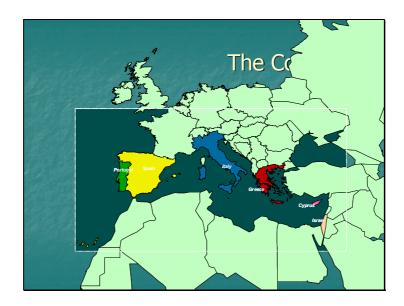
Universidade do Porto FEUP Engenharia		Relation between range of circumstances in the country and water related problem		
Program	Measures	Main Interventions	Types	
Implementation of the New Portuguese- Spanish Convention	Portuguese- Spanish shared river basins	Definition of bilateral joint measures Definition of environmental flows Definition of estuaries management measures Water monitoring of international river stretches	P; External Relations P; External Relations P; P&P External Relations P&P External Relations	
Legal and Institutional Framework adequacy	Legal Framework adequacy	Elaboration of the "Water Law" Compilation of Water legislation Establishment of a coastal waters' legal framework Implementation of a integrated system for cadastral and licensed use	L&I L&I L&I L&I P&P	
	Administrative Reinforcement	Adequate Administration to the implementation of RBP Promote and educate human resources on water resources management	L&I P; E&F P&P	
	Identify and create River Basin Districts and Administrations		P; L&I E&F	

Environmental Sustai	nability action axis		
Program	Measures	Main Interventions	Types
Protection, Rehabilitation and Promotion of water resources quality	Minimization of drought effects	- Establishment of a methodology (i) to characterise drought periods	Р
		(ii) to manage water resources on drought	Р
		- Elaboration of a Contingency Plan for drought periods	P&P L&I
Environmental and Biologic Conservation	Environmental Flows (E. F.)	Study of E.F. regimes Adequate hydraulic plants to guarantee permanent E.F.	P P&P E&F
	Ecosystem conservation and rehabilitation	- Assessment of environmental risks	Р
		- Management and recuperation of fluvial ecosystem	P; P&P E&

	emand Management		
Program	Measures	Main Interventions	Types
Guarantee of water supply for	Domestic and industrial supply	- Promotion and creation of pluri- municipal systems	P&P E&F
human use and		- Increase of level of water supply	P&P: E&F
for activity		guarantee, by creation of reserves	
sectors		 Construction and rehabilitation of infra-structure 	P&P E&F
	Irrigation	- Increase of level of water supply	P&P E&F
		guarantee, by creation of reserves	P&P E&F
		infra-structure	FOF, LOI
Conservation of	Efficiency on use of	- Promotion of efficient use of water	P&P
water resources	water: domestic and	- Identification and reduction of	P&P
	industrial supply	systems' water losses and of non- accountable consumption	
	Efficiency on use of	- Identification and reduction of	P&P
	water for irrigation	systems' water losses and more	
		rational use of water	

FEUP Engenharia		Relation between range circumstances in the country and wa related proble		
Economic and Financ Program	Measures	Main Interventions	Types	
Program Promotion and	weasures	- Assessment of fiscal instruments	E&F	
Consolidation of Water		- Definition of financing models	E&F	
Market		- Analysis of adequacy of management entities to the water market	E&F	
Economic and financial	User-pay	- Implementation of the principles of user-	P&P E&F	
regime application	principle	pay and polluter-pay principles		
		- Revision and application of E&F regime to public hydro domain	E&F L&I	
		- Studies on water pricing	E&F	
		- Establishment of a water pricing policy	P: E&F	
		- Definition of E&F regime applicable to	L&I	
		(i) domestic water supply and (ii) irrigation systems		
	Cost of water	- Assessment of all costs to be internalised	E&F P&P	
		- Assessment of real costs of the systems	E&FP&P	
		- Establishment of "rough water" price	E&F E&F: P	
		- Studies for fixing taxes and tariffs	E&F P	


rsidade do Forto UP Englediare Circumstances in the countries relate		
arch on Water Resources action a		
	Types	
	P&P	
(II) groundwater - Ecological and biological monitoring network	P; P&P P; P&P	
- Urban water supply and wastewater infrastructure		
(i) cadastral system	P&P	
	P&P	
- Creation of a system to support water resources management	P; P&P	
 Maintain and explore an effective water resources information system 	P&P	
- Development of hydrological and hydraulic studies	P&P	
- Development of DSS on economic water use	P; P&P	
- Systematic assessment of the Plans	P&P	
- Control of Plans application	P&P	
	circumstances in the count relat arch on Water Resources action a: Main Interventions - Improve monitoring of: (i) surface water (ii) groundwater - Ecological and biological monitoring network - Urban water supply and wastewater infrastructure (i) cadastral system (ii) quality control system - Creation of a system to support water resources management - Maintain and explore an effective water resources information system - Development of bydrological and hydraulic studies - Development of bS on economic water use	



FEUP Engenharia	umstance	Relation b es in the co r	etween range buntry and wat elated problem
Program of measures: Short term (2006) Invest	ment Plan	(Million Eur	o)
Program	Sado	Guadiana	Rib. of Algarve
Protection and Rehabilitation of water resources quality	62,7	94,3	100,3
Water supply for human use and for activity sectors	363,7	318,7	134,1
Ecosystem conservation and rehabilitation	3,0	6,8	13
Drought, Floods and Pollution Accidents Prevention and Minimisation	31,8	39,1	4,1
Valorisation of Water Resources	11,3	5.3	0,9
Planning and Management of Hydro Domain	3,6	1001,5	37,2
Legal and Institutional Framework	2,4	5,7	0,7
Economic and Finance	0,5	0,5	0,3
Citizen Information and Participation	0,1	0,1	0,3
Knowledge and Research on Water Resources	10,3	10,0	1,2
Assessment of National Water Plan (PNA) and River Basin Plans (RBP's)	0,8	0,8	0,2
TOTAL	490,2	1482,7	292,3
% of 20 years Planned Investment	51%	66%	82%

The goals

 Identification of Commonalities and Gaps between the selected regions

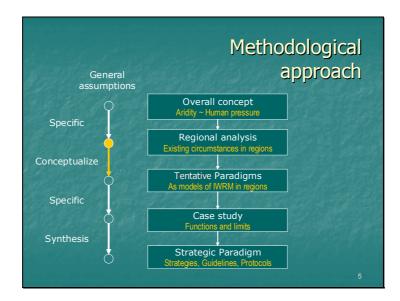
- Development of a Typology of water deficient regions
- Conceptualization into Paradigms

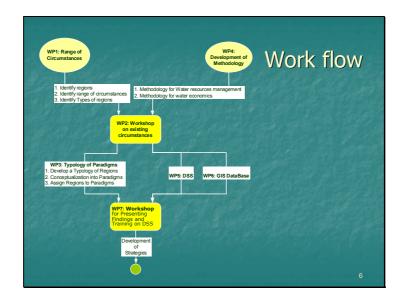
Semantics - Concepts

Paradigm

- A tentative
- construction of reality accepted by most
- people in an intellectual
- community, because of its effectiveness in explaining a complex

process, or set of data


Case (study)

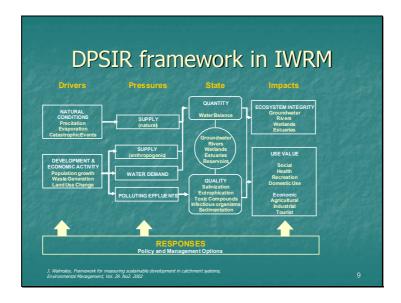

 An example, instance, or occurrence supporting or convincing arguments or evidence

• Туре

 A kind, class, or group having distinguishing characteristics in common

WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

Identification of Commonalities and Gaps between the selected regions


A framework for Indicators

- *Driving forces:* Human influences and activities that when combined with environmental conditions underpin environmental change
- Pressures: Pressures exerted on resources and ecosystems from human activities
- State: Condition of resource and ecosystem *Impacts:* Results of pressures on the current state

- *Responses:* Policies, laws, programs etc

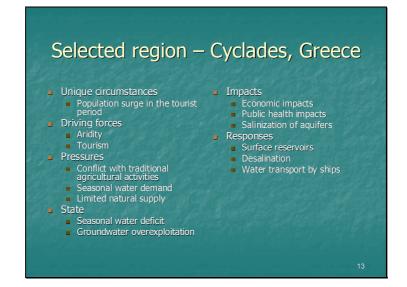
Selected regions - Greece

- Attica The capital and surrounding areas

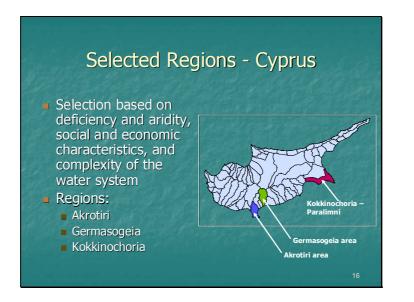
 - Half of the country's population
 Permanent water deficits due to population size
 Local water resources insufficient to meet demand
 Dependence from other Water Regions
 Polluted and eutrophic aquifers

- Thessaly intensively cultivated plains
 Seasonal water deficit due to irrigation demand
 Antiquated agricultural activities and practices

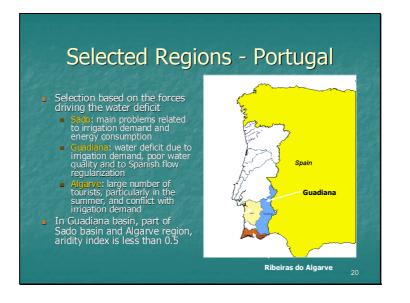
 - Summer peak for irrigation and urban demand Salinization due to over-abstraction Summer peak can reach up to thirty times the permanent population Limited water resources (mostly aquifers)



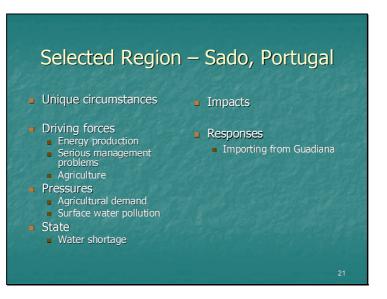
Selected regior	n – Attica, Greece
 Special characteristics Metropolitan area No usable river basin Driving forces Periodic droughts Population growth Land use change Pressures Water Demand Reduced supply 	 Impacts Public health concerns Ecosystem degradation Responses Interbasin transfers Network development Public awareness Pricing control
 State Permanent water deficit Aquifer pollution 	11

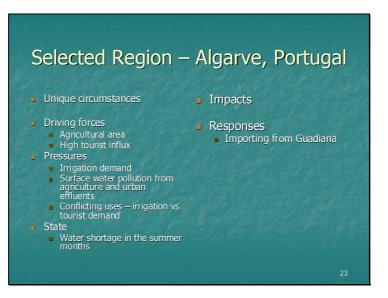


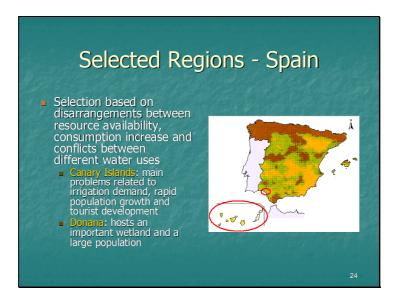
WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

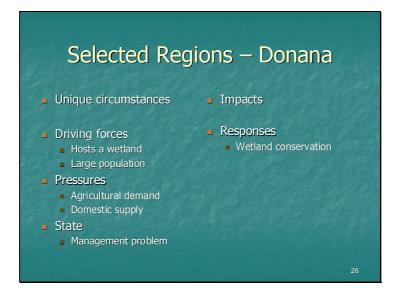


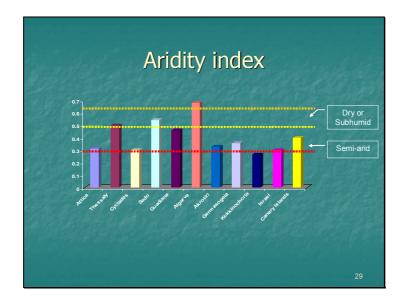
Selected Region	– Akrotiri, Cyprus
 Unique circumstances Driving forces 	 State Serious management problems Permanent water shortage problems
 Aridity Large Urban Area Intensive agriculture Human intervention on hydrological cycle Pressures High Dependence on rainfall Reduction of replenishment Large Urban demand Pollution from agrochemnicals 	 Impacts Drop of groundwater levels Sea intrusion Poor groundwater quality Responses Dams (already developed) Desalination Artificial groundwater recharge / Pumping control
i den de la la seconda de l	17

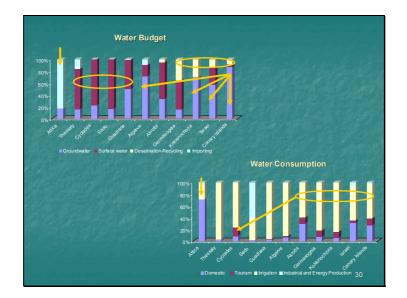

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

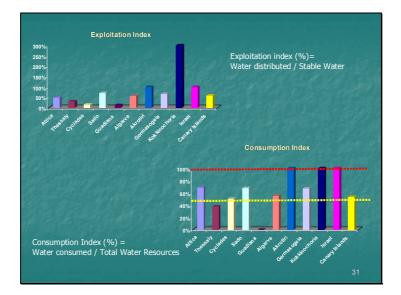


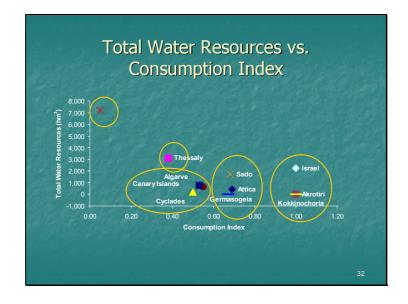


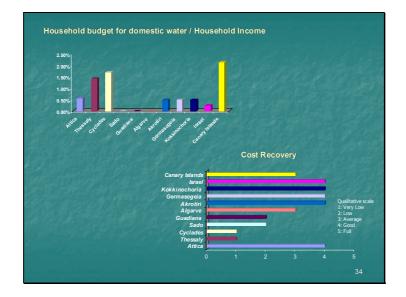


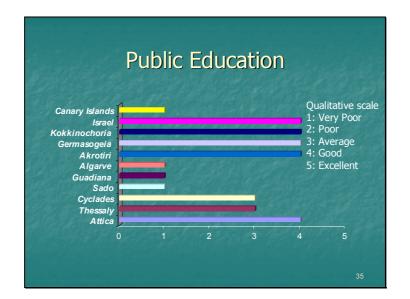


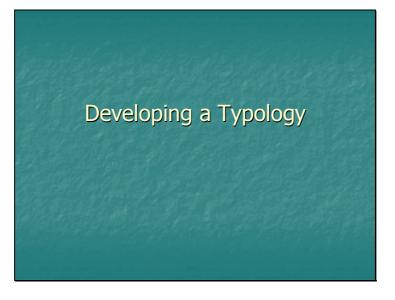



Indices: Natural environment ~ Human pressure

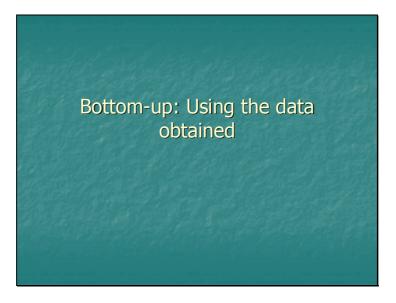


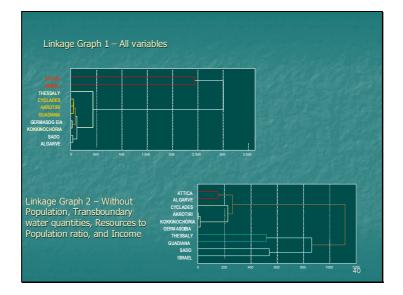




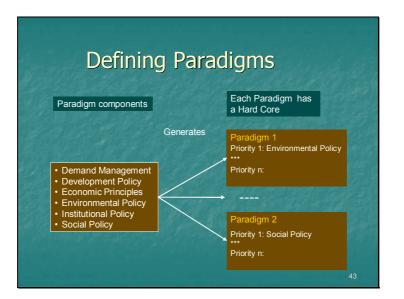


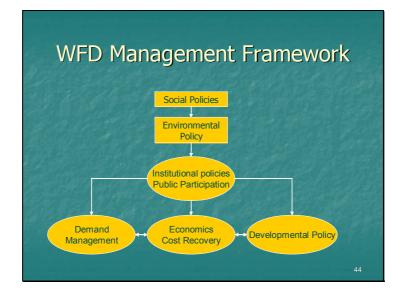
Development Priorities						
	Urban Growth	Agriculture	Tourism	Supply Enhancement		
Attica	+		1. K. H. S. F.	++		
Thessaly	2.57.5	++	15 - 51	THE OF ALL		
Cyclades	1.50		++			
Sado	1 2 3	++		STREET,		
Guadiana		++	1.28 34	1		
Algarve	19722	+	++	Carles Participants		
Akrotiri		+	++	1-11 - J. A.		
Germasogeia		+	++	Sector Sector		
Kokkinochoria		+	++			
Israel		24433553902		++		
Canary Islands			++			




Objectives and Approaches

- Objectives: To develop a systematic & comprehensive typology on existing conditions in water deficient regions of Southern Europe
- Bottom-up approach
- Driven by "data"
- Top-down approach
 - Driven by "Paradigms"


A Framework for proposed Paradigms

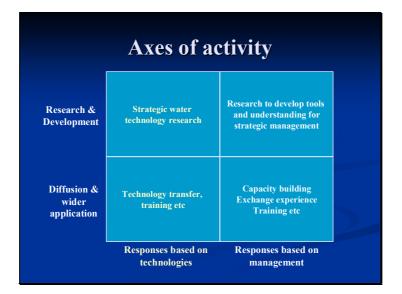

Defining components of the proposed paradigm

- Demand management policies
- Developmental policies
- Economic policies Cost recovery
- Environmental policies
- Institutional policies Public participation
- Social policies

- Existence of a National/International River shed
- Pollution/Salinization
- Permanent Deficit vs. Seasonal Deficit
- Main water Users and Conflicts
- Dependency on Interbasin Water Transfer
- Geographical (or Political) Isolation, Fragmentation
- Infrastructure
- Management Framework

Role of Indicators in the Strategic Paradigm Components							
	Demand Management	Economic Principles	Environmental Policy	Institutional Policy	Development Policy	Social Policy	
National/Inter-national Water sheds		0.225	***	***	**		
Pollution/ Salinization		***	***		**		
Permanent vs. Seasonal Deficit	***	616.0		1.15	***	**>	
Main Users		***	R.S.		***	**>	
Dependency on Interbasin Transfer		C. S. S.		**	***	20	
Geographical Isolation, Fragmentation	5.86	*	8 . del	**	**	**	
Infrastructure	**	***	**	12	***	153	
Management Framework	*	*		*		*	

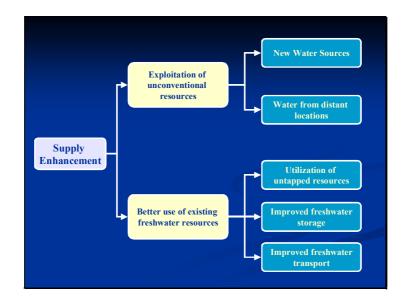
	Indicators and Case Studies								
	Attica	Thessaly	Cyclades	Israel	Cyprus	Sado	Guadiana	Algarve	Canary Island
National/Inter- national River Basin	1-	4	-	1	-	-	1	-	-
Pollution/Salinization	Р	P,S	S	S	S	Р	Р	Р	
Permanent Deficit vs. Seasonal Deficit	P,S	S	S	P,S	S	Р	Р	P,S	
Main Users	D	Ι	Т	Ι	Ι	Е		Ι	
Dependency on Interbasin Water Transfer	Н	М	12	-	-	1-	Н	6-6	
Geographical Isolation, Fragmentation		f.	Н		?	8-7		-	Н
Infrastructure	М	L	L	Н	М	М	L	L	М
Management Framework		R	М	N	N	N/M	N/M	N/M	R/L



Demand Reduction & Supply Enhancement Options

Water resources problems

- Current water resources problems in EU and third countries require:
 - Technological
 - Management Responses
- Wider application of existing technologies and techniques
- Further research and development of new technologies
- New management approaches



Technology Responses

- Supply Enhancement
 - Better use of existing resources
 - Exploitation of unconventional water sources
- Demand Reduction
 - Industry
 - Agriculture
 - Personal Demand
- Pollution Prevention / Correction

Utilization of untapped resources

Groundwater

- Private wells in shallow aquifers Exploitation of deep and karstic aquifers
- Main problems related to:
 Water quality
 Abstraction difficulties
 Urban waters
- Urban waters
 - Sources
 - Rainfall
 - Stormwater
 - Main problems related to:
 - Lack of knowledge of water flow paths

- Surface waters
 - Exploitation of winter surface runoff
 - Advantages
 - Commonly employed technique
 Economics of the second s Economic and environmental benefits in comparison to large dam construction
- Surplus freshwater transfer from neighbouring regions

Improved Freshwater Storage

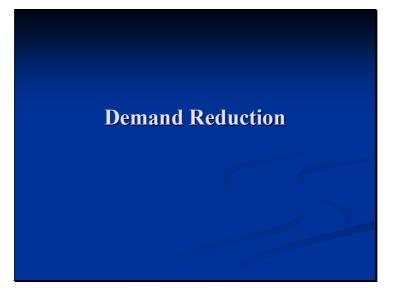
- Evaporation prevention from surface reservoirs
- Objective: Reduction of losses from evaporation (5 to 10 % of reservoir volume)
 - Mechanisms:
 - Compartmented reservoirsReflective coatings
 - - Surface films
 - Mechanical covers for small reservoirs
- Artificial recharge of underground aquifers
 - Descrive: turn surface water of unreliable quantity and quality into a
 - safe source for supply
 - Solution to the over abstraction problem Forms of charging:

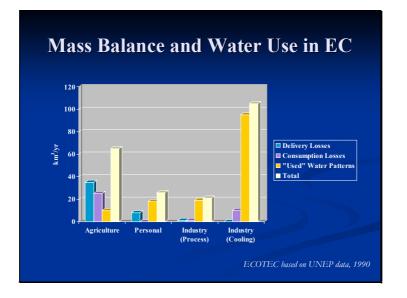
 - Open Recharge (increase of surface water levels) ■ Well Recharge

Improved Freshwater Transport

- Reduction of losses from open channels
 - Applied to large scale interbasin transfers to solve regional water shortages
 - Techniques
 - Compacted earth
 - Rigid surfaces
 - Membranes
 - Soil sealants
- Reduction of losses from pipes
 - Development of methods for:
 - Detection with sonar devices
 - Remedy through pressure restriction and pipe replacement Need for improvement of existing technologies

Unconventional Supply


Cloud Seeding


- Rainfall increase between 10 and 25%
- Increased precipitation in favour of agriculture
- Technology still under evaluation
 Possible impacts on other sectors / regions
- Tanker Transport
- Wastewater Reuse / Recycling
- Wastewater Reuse / Recycling Reuse: "transmission" of wastewater (treated or untreated) directly to a specific intended use Crop Irrigation Street cleaning Recycling: utilisation within the same end user category Industrial cooling

Desalination

- Desaination
 Technologies
 Distillation (MSF, MED)
 Membrane technologies (Reverse
 Osmosis, Electrodialysis)
 Crystallisation (Freeze Melting)
 Ion Exchange
 Significant drop in water costs (still
 water production costs are three times
 higher)
 R&D Efforts:
 Development of competing
- - R&D EHorts:
 Development of competing technologies with less energy requirements
 Reduction of energy costs with the exploitation of Renewable Energy Sources

Demand Reduction Potential

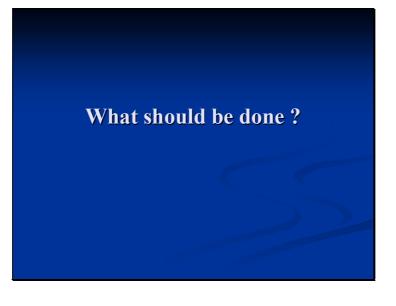
- New technologies for demand reduction are very specific to the end user
- Large potential for agricultural and industrial activities
- Personal demand reduction is based on the introduction of water saving devices

Agricultural Demand Reduction

- Scheduling services
 Estimation of actual water requirements
- Improvements in irrigation technologies
 - Reduction of losses in <u>delivery</u> / use
 - Technologies
 - Surface Irrigation
 - Sub Irrigation
 - Drip Irrigation
 - Sprinkler Irrigation
 - Enclosures

- Reduction of the actual quantity needed
 - Increase of salt tolerance
 - Decrease of water consumption

Genetic Improvement
 Introduction of crops with specific characteristics


Industrial Demand Reduction

- Process Recycling
- Operation changes
 - Modernization and better control of process equipment in order to reduce water consumption
- Process changes
- Input (raw materials) substitution
- End product changes

Personal Demand Reduction

- The introduction of water saving plumbing features can reduce consumption up to 35 %
- Economic, social and regulatory barriers can be overcome through:
 - Economic instruments
 - Education and awareness
 - Use of standards

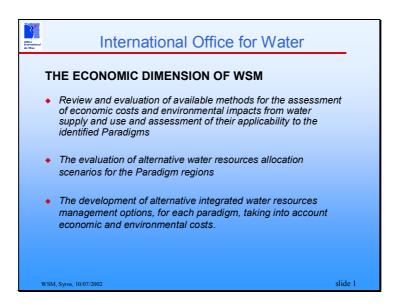
Recommended RTD Activities

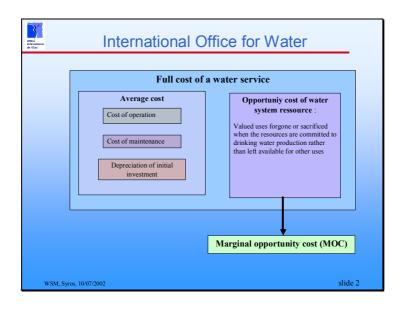
■ Water Reuse

- Develop
 - Appropriate standards
 - Improved disinfection techniques
 - Appropriate storage techniques
- Encourage wider diffusion of natural wastewater treatment systems

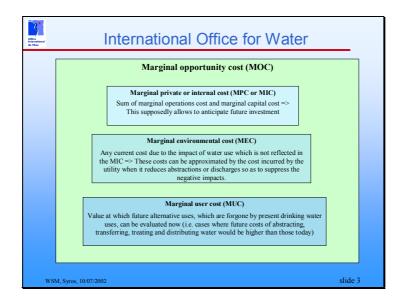
Desalination

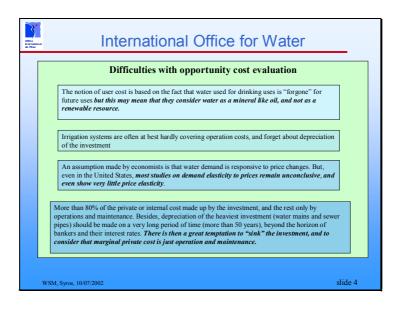
- Develop cheaper approaches to desalination
- Combine desalination processes with RES
- Exploitation of aquifers
 - Develop detection and new exploitation techniques

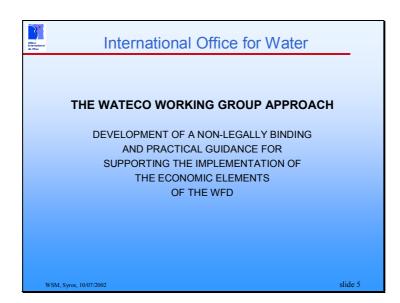


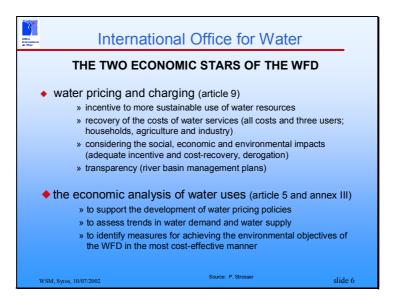


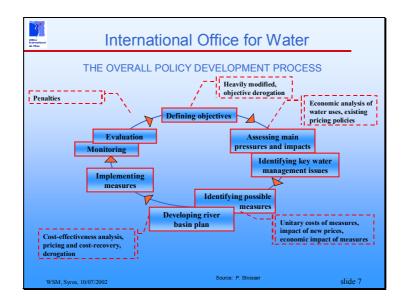
Recommended RTD Activities

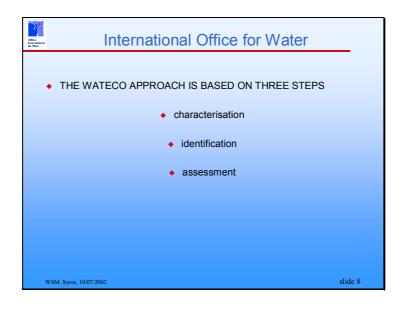

- Interbasin Transfer
 - Methods for assessing the environmental and socio – economic impacts
- Aquifer Recharge
 - Develop the process for storing rapid winter or urban runoff
- Agricultural Demand Reduction
 - Develop appropriate scheduling techniques
 - Diffuse drip irrigation methods
 - Investigate the potential for crop modification
- Industrial Demand Reduction
 - Develop methods for process recycling

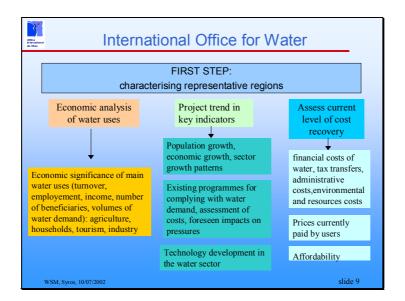


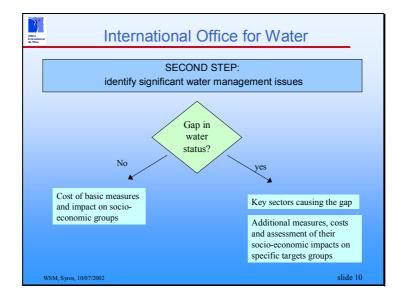


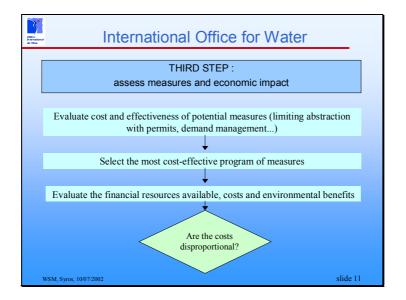


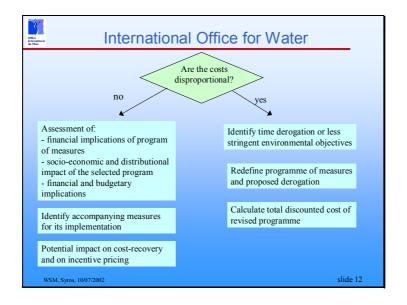


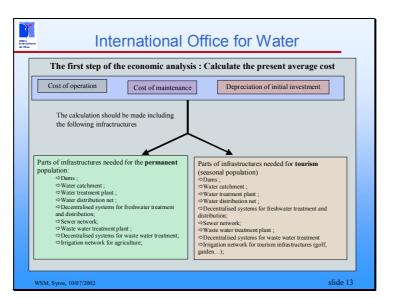


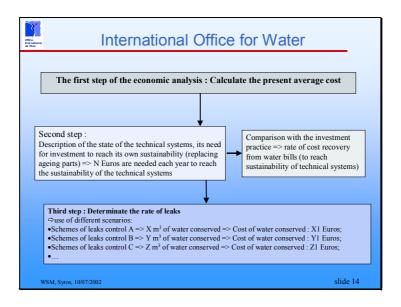


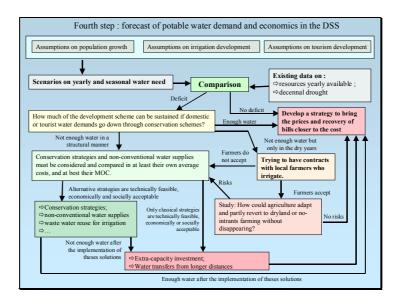


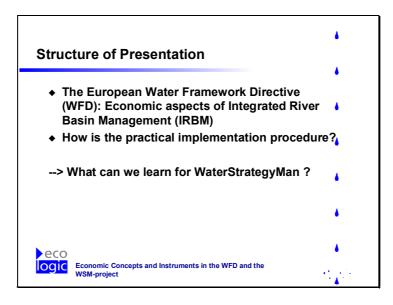




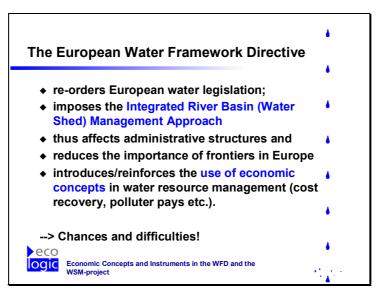


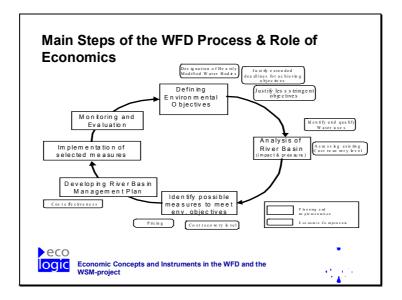


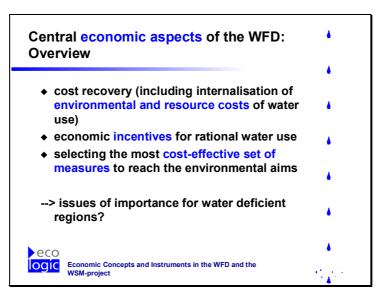


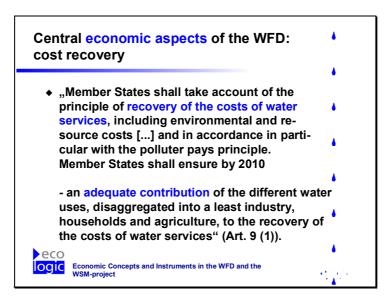


WATERSTRATEGYMAN WORKSHOP PROCEEDINGS

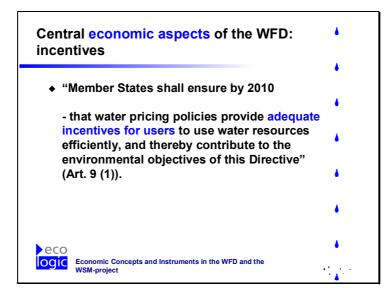


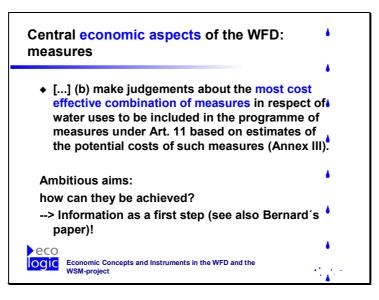


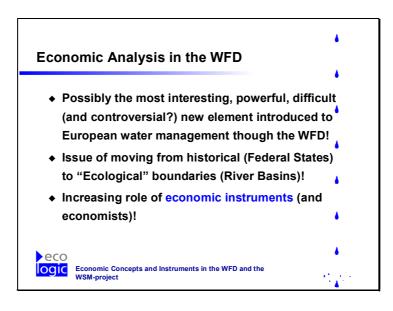


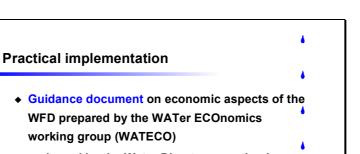




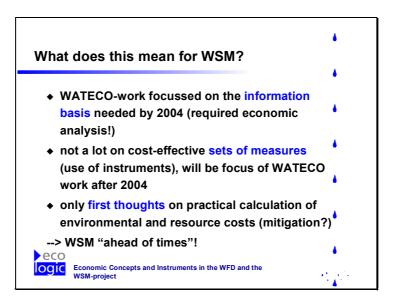


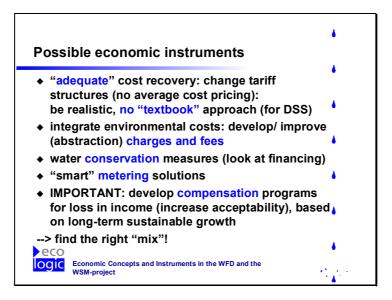





Requirements of the WFD for 2004	•
•	4
For each river basin:	
1. analysis of characteristics	4
2. review of the impact of human activities on water bodies	
3. economic analysis of water uses	
-	4
(according to Article 5, Annex II, III and V)	
	•
eco	4
Economic Concepts and Instruments in the WFD and the WSM-project	

Economic Analysis of Water Use	•
(required until 2004!)	•
Contain enough information for : ◆ calculations for taking into account the cost recovery principle	•
 judgments on the most cost-effective combination of measures 	•
 calculations for water pricing policies giving incentives for the efficient use of water 	•
Economic Concepts and Instruments in the WFD and the WSM-project	




 endorsed by the Water Directors meeting in Sevilla in June, final version end of July
 National implementation has started (in form of guidance for administrations, pilot projects etc.)
 --> WSM should build around this work!

Economic Concepts and Instruments in the WFD and the WSM-project

The way ahead for socio-economics in WSM	•
	•
 Build on the principles of the WFD 	
 On information: Use existing results of WATECO as a basis, test them in co-operation with national and regional authorities (the hat to do the "job" anyway) 	
 move forward with identifying (sets of) measures "in practice", integrate results into future WATECO (and national) work 	b
 move forward on estimating future demand (supply), scenario building (here: seasonal dimension important) 	•
Economic Concepts and Instruments in the WFD and the WSM-project	

	The Water I		k Directiv	e
Characterisation of river basin : linking biophysical and economic information	Where will we be in 2015? Assessing trends in water demand and supply	Selection cost- effective measures for achieving the environmental objectives of the WFD	Assessing existing and future levels of the recovery of the costs of water services	Linking the economic analysis with the information, consultation and participation process
FIRMA	EUROCAT	CYPRUS	METRON	FIRMA
PEGASE	EUROMARKET	AgriBMPWater	EUROMARKET	HARMONICOP*
EVALUWET	AQUALIBRIUM	MULINO	AQUALIBRIUM]
]	Water Strategy Man		WADI	
		[MEIF	

Water Resources Planning and Management in the 21st Century Capacity Building & Institutional Mobilization

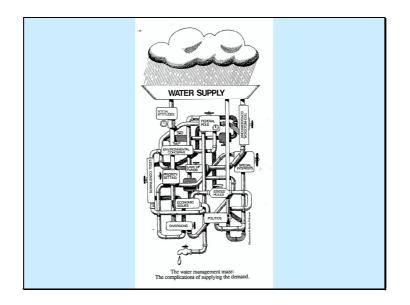
> Evan Vlachos Sociology and Civil Engineering Colorado State University

The Five Crises

- An Engineering Crisis: Supply and Demand
- An Ecological Crisis: Quality
- An **Organizational** Crisis: Institutional Mobilization and Coordination
- A Methodological Crisis: Data and Modeling
- A **Perceptual** Crisis: Public Awareness, Involvement and Participation

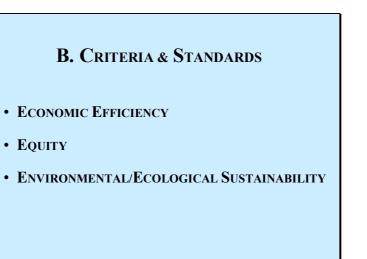
Changing Approaches to Planning and Management			
1960s	Feasibility studies, Elitist planning, Extrapolative orientation		
1970s	Environmental Impact Assessment, Indicators/Principles & Standards, modeling/data		
1980s	Cumulative Impact Assessment, foresight emphasis, "User pays," "Polluter pays" principle		
1990s	Sustainability, Equity/Efficiency/Effort, Normative Planning		
2000s	Globalization, Integrated/Holistic/Comprehensive, "Co-evolution"		

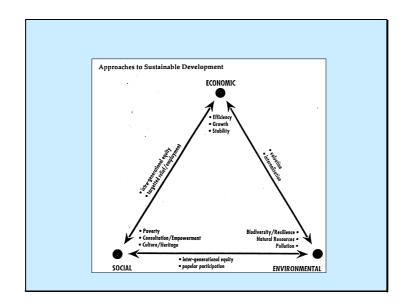
Evolution of Water Resources Approaches


	Approach	Emphasis
1960s	Traditional	Subsystem government power
1970s	Rational	"Administrative,"
		Political rationality,
		Environmental, social calculus
1980s	Transitional	Free market, budget reform, budget
1990s	Managerial	Muddling through with a purpose
2000s	Transformational	Holistic, integrated, heterarchical

153	
-----	--

Complexification			
A. Conceptual	= shifting paradigms/complexity/ chaos/heterarchization		
B. Methodological	= multi-/GIS, ES, AI, DSS/ systems/computational prowess		
C. Organizational	= participatory/anticipatory/ contingency emphasis		
D. Substantive	= new focus/areas of concern		

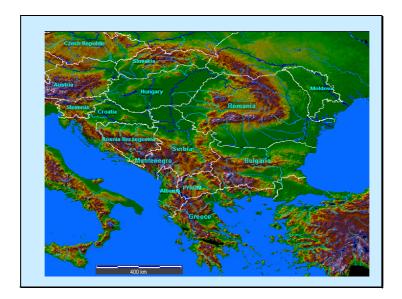



A. IWRM Principles/Premises

Principle I: Water as a finite and vulnerable resource Principle II: Participatory approach Principle II: The important role of women

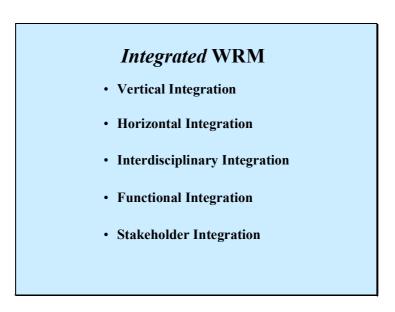
Principle IV: Water as an economic good

EQUITY


- **Procedural Equity** access to and influence on the planning process and decisions: transparency, public participation
- **Consequential Equity** equity of outcomes, parity, proportionality, priority, classical distributive justice

C. Cross-Cutting Practices

- 1. Basin-Wide/Watershed Emphasis
- 2. Integration of Supply and Demand Approaches
- 3. Intersectoral Emphasis
- 4. Regulatory and Institutional Frameworks
- 5. Transboundary Interdependencies/Geopolitics
- 6. Participatory and Transparent Governance



A	THE ENABLING ENVIRONMENT
A1	Policies - setting goals for water use, protection and conservation
A2	Legislative framework – Water policy translated into law
	Financing and incentive structures – allocating financial resources to water needs
	INSTITUTIONAL ROLES
B1	Creating an organisational framework - Forms and functions
	Institutional capacity building - developing human resources
	MANAGEMENT
C1	Water resource assessment - understanding resources and needs
	Plans for IWRM — combining development options, resource use and human interaction
C3	Demand management – using water more efficiently
C4	Social change instruments - encouraging a water-oriented civil society
C5	Conflict resolution - managing disputes and ensuring sharing of water
C6	Regulatory instruments - allocation and water use limits
C7	Economic instruments - using value and prices for efficiency and equit
C8	Information management and exchange -
C6 C7	Regulatory instruments — allocation and water use limits Economic instruments — using value and prices for efficiency and eq

- The Need for New Paradigms

 Sustainability, heterarchy, co-evolution
- The Understanding of New Contexts – "Raplexity," interdependence, globalization
- The Emergence of New Methodologies
 - Cumulative, synergistic, diachronic impacts
 - Indicators, DSS, data-information, judgement
 - Computational prowess

Towards a "Vigilance" Strategy

Environmental Scanning

[Monitor trends and developments]

Organizational Mobilization

[Improve management]

Decision Support Systems

[Intelligence, interpretation, implementation]

Contingency Planning

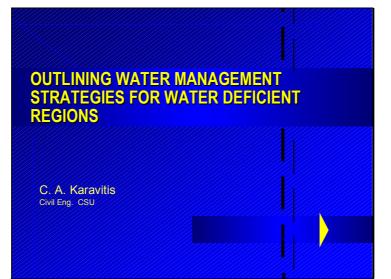
[Wider range of alternatives and options]

Emerging Operational Principles

• Envisioning

Share the dream, share the goals

• Empowerment


Joint decision making, power sharing

• Enactment

Implementation, civic engagement

DEMAND MANAGEMENT

- Water saving/conservation
- recycling/reuse
- zoning/land use changes and policies
- legal, regulatory and administrative measures
 - prioritizing demands
 - > metering
- technological adjustments (agricultural, urban, industrial
- Forecasting system

161

SUPPLY ENHANCEMENT

- System improvement/conservation
- surface ground water storage
- interbasin/intrabasin transfers
- water importation
- conjuctive use
- weather modification
- desalination

ECONOMIC OPTIONS

- Economic Incentives/Pricing
- Water budget changes
- Cost recovery
- Customer consultation/stakeholders involvement
- Existence of guaranteed standards and measurable indicators
- Spread of risk/insurance

3

5

- Existence of explicit environmental standards/enforcement
- Legal and administrative mandates
- environmental regulations
- Impact assessment
- Risk assessment and management of uncertainty/vigilance

- Conservation campaigns
- Alternative dispute resolution/conflict management
- Clarity of vision, goals and objectives
- Institutional mobilization
- Capacity building
- Administrative apparatus

STRATEGY OPTIONS AND ACTIONS MATRIX					
		S trategy OP TIONS	5		
ACTIONS	D emand Ma na ge ment	Supply Enhancement	Capacity Building		
1	Household conservation	Importing water		ø	###5
2	Pricing control	Sur face sto ra ge		K	
3		Reuse		Ò	## #5'

