WaterStrategyMan EVK1-CT-2001-00098

.

## MANUAL OF THE INTEGRATED DECISION SUPPORT SYSTEM

Chapter Three Water Demand Scenarios



## Chapter 3 – Water Demand Scenarios

The Demand Scenarios Module of the DSS produces forecasted time-series of water demand for all the *demand nodes* that are placed on the map of the region, both *site*-type, such as settlements, tourist sites, irrigation, animal breeding and industrial sites, and others such as hydropower plants, exporting and river demands.

Scenarios are generated by specifying appropriate growth rates to the key variables (Drivers) that govern the water demand of the nodes, such as population for the domestic use, cultivable area and livestock for agricultural practices, production growth and energy requirements for industries and hydropower plants respectively. This specification can be done in two ways:

- a) at once for all the nodes belonging to the same demand category, by activating the *Create Scenarios/Demand* option in the Navigation Panel, or
- b) node by node going through the list on nodes in the Navigation Panel and editing growth rates from the Data Editor Panel.

| 🕷 Water Strategy Man Decision Support Syste         | em - Demo, Demo WM5 2                                  |                        |
|-----------------------------------------------------|--------------------------------------------------------|------------------------|
| Main Basic Data Help                                |                                                        |                        |
| 🖽 🍼 Demo (BASE CASE)                                | Use                                                    | Growth Rate Expression |
| 🖻 🍼 Demo WMS 1 (Water Management                    | Domestic Use                                           |                        |
| È·≫ Demo WMS 2 (Water Manageme<br>È·Create Scenario | Permament population (in settlements)                  | 0.015                  |
| Water Availability                                  | Seasonal population (in settlements and tourist sites) | 0.017                  |
| Demand<br>- Create Water Management Scheme          | □ Agricultural Uses                                    |                        |
| ⊡ Modify                                            | Cultivable area growth (in irrigation sites)           | 0.02                   |
| ⊡ Results                                           | Livestock number increase (in animal breeding sites)   | 0.05                   |
| - EVALUATION                                        | Industry And Energy                                    |                        |
|                                                     | Industrial production growth                           | <not set=""></not>     |
|                                                     | Growth of energy requirements from hydropower          | <not set=""></not>     |
|                                                     | Dther                                                  |                        |
|                                                     | Growth of demand for exporting to other regions        | <not set=""></not>     |
|                                                     |                                                        |                        |
|                                                     | Apply Growth Ra                                        | tes                    |

Figure 1. Definition of growth rates from the Create Scenario\Demand Panel (on the right)

In order to assign the same growth rate number or expression to all the nodes of the same water sector, e.g. to all settlement nodes, the user of the DSS activates the Demand Scenarios Panel from the Navigation window and double clicks the  $\langle Not Set \rangle$  field corresponding to *Permanent population (in settlements)*. This procedure opens a table where time variant (yearly) or constant rates can be entered. With the *Add* and *Delete* buttons new entries are defined or erased, each one related to a year of the simulation period. The growth rate assigned to a year is implicitly assigned to all the years that follow, which do not have an explicit rate, until another year with a different rate is entered. For example, if growth rates of 1.5, 2.1 and 3% are entered for years 2001, 2004 and 2010 respectively, this means that for the period 2001-2003 the permanent population growth rate will be

1.5%, for the period 2004-2009 it will be 2.1% and from year 2010 up to the end of the scenario horizon, it will be set equal to 3%. With the *Apply Growth Rate* button (located at the bottom of the Demand Panel) the user can apply the growth rate to all the nodes of the sector. The operation overwrites any custom value the end user may have previously entered, even if it has been assigned to a particular node.

| Permament population (in settlements) 🔀 |                 |  |  |  |  |  |
|-----------------------------------------|-----------------|--|--|--|--|--|
| Year                                    | Growth Rate (%) |  |  |  |  |  |
| 2001                                    | 1.50%           |  |  |  |  |  |
| 2004                                    | 2.10%           |  |  |  |  |  |
| 2010                                    | 3.00%           |  |  |  |  |  |
|                                         |                 |  |  |  |  |  |
|                                         |                 |  |  |  |  |  |
|                                         | 0k Cancel       |  |  |  |  |  |

Figure 2. Growth rate form with time-variant rates.

Having confirmed the application of the desired values, it is possible to see graphically what is the influence and effect of any choice over the total water demand of the domestic sector during the simulation period. The yearly sums are displayed in a graph below the Demand Scenario Panel. A tab allows the user to pass from the graph to a table format of the visualized data.



Figure 3. The chart below the Demand Panel displays the Demand Scenarios for each water sectors. Here the effect of three different growth rates for years 2001, 2004 and 2010 is visible.

Alternatively, growth rates for the demand drivers can be entered node-by-node. Data are edited directly in the Data Editor Panel, after having accessed the specific nodes through the Object Manager panel of the DSS. Node by node definition of data overwrites the one by sector. Table 1 shows for node type, the variables to be assigned a growth factor (or another type of customized expression) and their location in the Data Editor table of attributes.

| Node Type               | Variables                                 | Data Editor Tab            |
|-------------------------|-------------------------------------------|----------------------------|
| Animal Breeding<br>Site | Number of Animals                         | Animal Breeding Activities |
|                         | Production                                | Demand Data                |
| Industrial Site         | Consumption Rate                          | Demand Data                |
|                         | Share of Consumptive Demand               | Demand Data                |
| Irrigation Sita         | Maximum Cultivable Area                   | General                    |
| inigation site          | Crop Area Share                           | Irrigation Activities      |
|                         | Residential & Tourist<br>Population       | Population Data            |
| Settlement              | Population Month Variation<br>(optional)  | Population Data            |
|                         | Residential & Tourist<br>Consumption Rate | Demand Data                |
|                         | Tourist Population                        | Population Data            |
| Tourist Site            | Month Variation (optional)                | Population Data            |
|                         | Tourist Consumption Rate                  | Demand Data                |
| Exporting               | Demand                                    | Demand Data                |
| Exporting               | Month Variation (optional)                | Demand Data                |
| Hudroolootrigity        | Energy Requirements                       | Demand Data                |
| Tryuroelectricity       | Month Variation (optional)                | Demand Data                |

Table 1. Attributes for building Demand Scenarios on a node level

The *Month Variation* variable, identified in Table 1 as optional, represents the yearly distribution of the increment set by the user to the demand key variable. If not used, the yearly growth is allocated monthly with the same percentage. The month variation entry is supported by a separate window of the DSS, which allows for direct editing of the percentages in a grid or for setting them graphically through a drag and drop operation on a chart. The *Set All Equal to Zero* button helps for a quick reset of variation values.



Figure 4. The Month Variation Window



Figure 5. Editing growth rate for a single Industrial Site

| ⊡ Nodes                                                                                                | General Demand Data            |                               |                                                                     |
|--------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|---------------------------------------------------------------------|
| <ul> <li>Demand Nodes</li> <li>Animal Breeding Sites (11)</li> </ul>                                   | Property                       | Value                         | Description / Units                                                 |
| <ul> <li>         Industrial Sites (28)      </li> <li>         Irrigation Sites (50)      </li> </ul> | 🖃 Maximum Demand               |                               |                                                                     |
| ⊕ Settlements (68)     ♦ Tourist Sites (0)                                                             | Maximum demand that can be met | 4665600                       | Maximum volume that can be allocated to the demand node (m²/month). |
| Exporting (1)     Reservatorio do Cabeco (314)                                                         | Demand Parameters              |                               |                                                                     |
| Environmental Demand (1)                                                                               | Demand Growth                  | 336709                        | Demand expression growth.                                           |
| Recreation (0)                                                                                         | Demand Month Variation         | <click edit="" to=""></click> | Annual demand month variation                                       |
| Hydroelectricity Production (0)                                                                        |                                |                               |                                                                     |

Figure 6. Editing growth rate for a single Export node

| 🕀 🔪 Links 📃                     | Gener | Demand Data   D      | emand Economic  | 28                            |                                   |
|---------------------------------|-------|----------------------|-----------------|-------------------------------|-----------------------------------|
| 🖻 Nodes 👘                       |       |                      |                 |                               |                                   |
| 🖻 🔿 Demand Nodes                | Prope | rty                  |                 | Value                         | Description / Units               |
| 🕀 🔶 Animal Breeding Sites (11)  |       |                      |                 |                               |                                   |
| 🕀 🔶 Industrial Sites (28)       | 🗄 Ope | ration               |                 |                               |                                   |
| 🕀 🔶 Irrigation Sites (50)       |       |                      |                 |                               |                                   |
| 🕀 🔶 Settlements (68)            | 🕀 Der | and                  |                 |                               |                                   |
| Tourist Sites (0)               |       |                      |                 |                               |                                   |
| 🕀 🔶 Exporting (1)               | E E   | nergy Requirements   |                 | 0                             | Annual Energy requirements growth |
| 🕀 🔶 Environmental Demand (1)    |       |                      |                 |                               | expression.                       |
| -  Recreation (0)               | E     | nerav Requirements N | Month Variation | <click edit="" to=""></click> | Required energy production month  |
| - 🔶 Navigation (0)              |       |                      |                 |                               | variation.                        |
| Hydroelectricity Production (1) |       |                      |                 |                               |                                   |
| HydroelectricityProduction-437  |       |                      |                 |                               |                                   |
| 😑 🔿 Supply Nodes                |       |                      |                 |                               |                                   |
| 📄 🖶 🔶 Importing (2)             |       |                      |                 |                               |                                   |
| ▲                               |       |                      |                 |                               |                                   |

Figure 7. Editing growth rate for a single Hydroelectric Plant

| ⊡ Nodes                                                                                                 | 🔺 Gen | eral Population Data   | Demand Data | Return flow quality           | Demand B | Economics                            |
|---------------------------------------------------------------------------------------------------------|-------|------------------------|-------------|-------------------------------|----------|--------------------------------------|
| <ul> <li>□ ◆ Demand Nodes</li> <li>□ ◆ Animal Breeding Sites (11)</li> </ul>                            | Pro   | perty                  |             | Value                         |          | Description / Units                  |
| <ul> <li> <b>Industrial Sites</b> (28)      </li> <li> <b>Industrial Sites</b> (50)         </li> </ul> | = s   | easonal Population     |             |                               |          |                                      |
|                                                                                                         |       | Tourist Population Gro | wth Gi      | rowFrom(0,0.017, Yea          | er)      | Overnight stays growth expression.   |
|                                                                                                         |       | Month Variation        |             | <click edit="" to=""></click> |          | Click to edit overnight stays' month |
| Environmental Demand (1)                                                                                | ٦L    |                        |             |                               |          | Vanation.                            |

Figure 8. Editing growth rate for a single Tourist Site

|                                                | General Population Data De | mand Data | Distribution Losses and Cost          | Sewage Network 🛛 Return flow quality 🛛 🚺 🕨            |
|------------------------------------------------|----------------------------|-----------|---------------------------------------|-------------------------------------------------------|
| ⊖ Demand Nodes     ⊕ Animal Breeding Sit       | Property                   |           | Value                                 | Description / Units                                   |
| Industrial Sites (28)     Inigation Sites (50) | Residential Population     |           |                                       |                                                       |
| Albufeira (158)                                | Residential Population Gro | wth If(Ye | ar>=2010,GrowthRate(636,0.03,*<br>r - | 'ea Residential population growth<br>expression.      |
| Aliece (302)                                   | Month Variation            |           | <click edit="" to=""></click>         | Click to edit residential population month variation. |
|                                                | Seasonal Population        |           |                                       |                                                       |
| Alto de Rodes (14<br>Altura (305)              | Tourist Population Growth  | Gro       | wthRate(36142,0.017,Year-199          | 3) Overnight stays growth expression.                 |
| Boliqueime (193)<br>Bordeira (330)             | Month Variation            |           | <click edit="" to=""></click>         | Click to edit overnight stays' month<br>variation.    |
|                                                |                            |           |                                       |                                                       |

Figure 9. Editing growth rate for a single Settlement



Figure 10. Editing growth rate for a single Irrigation Site

| ⊡ Nodes                                                                                    | General | Animal Bre | eding Activities | Return flow quality | Demand Econo | omics |
|--------------------------------------------------------------------------------------------|---------|------------|------------------|---------------------|--------------|-------|
| □                                                                                          | 🔶 Add   | 🗙 Delet    | e 🧯 View Live    | estock Info         |              |       |
| <ul> <li>Pig breeding in Albufeira (185)</li> <li>Pig breeding in Aliezur (350)</li> </ul> | Livesto | ick Type   | Numb             | er of Animals       |              |       |
| Pig breeding in Faro (23)                                                                  | Pig     |            | GrowthRat        | e(1393,0,Year-1998) |              |       |
| <ul> <li>Pig breeding in Lagoa (293)</li> <li>Pig breeding in Lagos (195)</li> </ul>       |         |            |                  |                     |              |       |
|                                                                                            |         |            |                  |                     |              |       |

Figure 11. Editing growth rate for a single Animal Breeding Site

The definition and management of data related to agricultural and animal breeding modelling is based on dedicated entry forms. Information about the list of the different crops cultivated in the region and their characteristics is placed in the *Crop Database*, accessed from the interface by the *Basic Data/Demand Database* menu, while the list of animals and their market values are placed in the *Livestock Types Form*, accessed by the *Basic Data/Livestock Types* menu.

In particular, the Crop Database Form presents crop data classified in three sections: the *General*, the *Complex Irrigation Model* and the *Simplified Irrigation Model*. In the General section two tables show a number of economic and crop type data for field and orchard crops respectively. Among the economic information for field crops there are Crop Market Value and Cultivation Costs, whereas maximum crop height and planting date are the crop characteristics. Orchard crops also have some exclusive information, such as Investment Cost, Lifetime, Growth period and Cost. The DSS user can customize his

own list of crops by adding new ones or deleting some through the *Add* and *Delete* buttons, and he can also move the crops from the field crop table to the orchard and vice versa by selecting the crop and clicking the *Move* button. The Complex and Simplified sections of the Crop Database Form contain the modelling information that is described in the WSM Approach chapter of this document: vegetation periods, crop factors and leaching, for the complex model, and monthly water requirements for the simplified.

| Crop D         | atabase<br>Complex Irrigation Mo | del Simplified Irriga | ation Model              |               |                     |                           |
|----------------|----------------------------------|-----------------------|--------------------------|---------------|---------------------|---------------------------|
|                | X Delete Move                    |                       |                          |               |                     |                           |
| Field Cror     |                                  | ,<br>                 |                          |               |                     |                           |
| ID             | Name                             |                       | Crop Market Value (6/m²) | Crop Cultiv   | vation Costs (€/π²) | Maximum Crop Height (m)   |
| 10             | vite&olive (vine & olive         | tree)                 | 2.58                     |               | 0                   | 2.75                      |
| 2              | carciofi (artichoke)             |                       | 0.12                     |               | 0                   | 0.7                       |
| 4              | olive (olive tree)               |                       | 0.30184                  |               | 0                   | 3.5                       |
| 5              | ortaggi - peperoni e po          | omodori (pepper & ton | 0.9335                   |               | 0                   | 0.6                       |
| 6              | vite (vine)                      |                       | 4.862                    |               | 0                   | 2                         |
| 7              | fragole (strawberry)             |                       | 1.856                    |               | 0                   | 0.2                       |
| 8              | erbai (fodder plants, gr         | ass for hay)          | 0                        |               | 0                   | 0.1                       |
| ✓<br>Drchard ( | Crops                            |                       |                          |               | ]                   |                           |
| ID             | Name                             | Crop Market Valu      | ne(€/m²) CropInvestmer   | t Cost (€/m²) | Lifetime (years)    | Annual Growing Costs (€/r |
| 3              | frutta (orchard)                 | 0.684                 | 0                        |               | 1                   | 0                         |
| 9              | pesche (peach tree)              | 1.005                 | 0                        |               | 1                   | 0                         |
| 1              | agrumi (citrus fruit)            | 0.775                 | 0                        |               | 1                   | 0                         |
| •              |                                  |                       |                          |               |                     |                           |
|                |                                  |                       |                          |               |                     | Close                     |

Figure 12. The General Section of the Crop Database

| ID |                                | Ve      | getation period le | ngth (da | ys)  | Cro        | p Coefficie | ent    |                          |  |
|----|--------------------------------|---------|--------------------|----------|------|------------|-------------|--------|--------------------------|--|
| ID | Name                           | Initial | Development        | Mid      | Late | kc Initial | kc Mid      | kc End | Leaching requirements (m |  |
| 1  | agrumi (citrus fruit)          | 60      | 90                 | 120      | 95   | 0.65       | 0.6         | 0.65   | 0.21                     |  |
| 10 | vite&olive (vine & olive tree) | 45      | 75                 | 50       | 85   | 0.48       | 0.78        | 0.58   | 0.155                    |  |
| 2  | carciofi (artichoke)           | 40      | 40                 | 250      | 30   | 0.5        | 1           | 0.95   | 0.19                     |  |
| 3  | frutta (orchard)               | 20      | 70                 | 120      | 60   | 0.6        | 0.95        | 0.75   | 0.24                     |  |
| 4  | olive (olive tree)             | 30      | 90                 | 60       | 90   | 0.65       | 0.7         | 0.7    | 0.19                     |  |
| 5  | ortaggi - peperoni e pomodo    | 30      | 40                 | 45       | 30   | 0.6        | 1.152       | 0.8    | 0.19                     |  |
| 6  | vite (vine)                    | 60      | 60                 | 40       | 80   | 0.3        | 0.85        | 0.45   | 0.124                    |  |
| 7  | fragole (strawberry)           | 60      | 60                 | 40       | 80   | 0.4        | 0.85        | 0.75   | 0.25                     |  |
| 8  | erbai (fodder plants, grass fc | 10      | 15                 | 75       | 35   | 0.9        | 0.9         | 0.9    | 0.25                     |  |
| 9  | pesche (peach tree)            | 20      | 70                 | 120      | 60   | 0.55       | 0.9         | 0.65   | 0.24                     |  |
| 9  | pesche (peach tree)            | 20      | 70                 | 120      | 60   | 0.55       | 0.9         | 0.65   | 0.24                     |  |

Figure 13. The Complex Irrigation Model Section of the Crop Database

| 📙 Live | Livestock Types |                            |                       |  |  |  |  |  |
|--------|-----------------|----------------------------|-----------------------|--|--|--|--|--|
| 🛛 🔶 A  | dd 🗙 Delete     |                            |                       |  |  |  |  |  |
| ID     | Livestock Type  | Demand per Head (m³/month) | Market Value (€/Head) |  |  |  |  |  |
| 1      | Pig             | 0.3                        | 0                     |  |  |  |  |  |
| 2      | Goats           | 0                          | 0                     |  |  |  |  |  |
| 3      | Livestock 3     | 0                          | 0                     |  |  |  |  |  |
|        |                 |                            |                       |  |  |  |  |  |
|        |                 |                            |                       |  |  |  |  |  |
|        |                 |                            |                       |  |  |  |  |  |
|        |                 |                            | Ok Cancel             |  |  |  |  |  |

Figure 14. The entry form for livestock data

An additional DSS functionality that characterises the demand scenarios is the Demand Feedback Loop. When enabled by the DSS user in the General Tab of the Data Editor, this option allows for modifying the demand scenarios on the fly, during the simulated water allocation. The variables that drive the scenarios behaviour, such as population for settlements or cultivable area for irrigation sites, are changed according to the demand deficits occurring in a user-defined number of previous years. Such a modelling approach can be used to simulate the demand node reaction and adaptation to deficit conditions. The demand feedback loop option can be activated for every single node, by setting the *Enable* parameter in the General Data Tab of the node equal to *True*. At the same section, the DSS user has to specify the interval of years to be considered in the feedback analysis. The feedback option is currently implemented for Irrigation Sites, Settlements and Animal Breeding and is under development for Tourist, Industrial Sites and Export Nodes.

The irrigation site loop works as follows: the DSS during the feedback interval estimates the actual water that is received by each crop cultivated in the irrigation site (according to the total supply delivered to the irrigation site and the user-defined priority for each crop) and from that the actually irrigated area. In case that the total volume of water received by the crop is less than the theoretical irrigation water requirements during the feedback interval, the DSS estimates the median of actually irrigated area during the interval and uses it to specify an upper limit for the area that can be cultivated with the specific crop.

In the case of settlements, if supply delivered to the settlement is zero during the feedback interval, then permanent and seasonal populations are set to zero for the remaining simulation period; if the total volume of water received is not equal to zero, then the DSS estimates for each month of the interval, an upper limit of overnight stays (seasonal population) that can be sustained with the volume of water delivered. This is performed through the calculation of the median value of overnight stays for that month of the interval that can be sustained with the volume of water delivered.



Figure 15. Feedback loop runs every feedback interval in the simulation period

For animal breeding activities the procedure is similar to that applied for irrigation sites. For the Demand Feedback Interval the DSS estimates the actual water that is received by each livestock type specified for the animal breeding site according to the total supply delivered to the site and the market value for the livestock type. In case that the total volume of water received by the animal type during the demand feedback interval is less than its' total water requirements, the DSS estimates the median of the number of animals that can be sustained, and uses it to specify an upper limit for livestock number of the particular type.