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1. SUMMARY 
A numerical methodology is presented for the modelling of phase change problems. A 
continuum model of convection-diffusion controlled mushy region phase-change is used to 
investigate the solidification of a binary mixture. The conservation equations equally apply to 
the liquid, mushy and solid regions, thus facilitating use of a fixed grid numerical method. 

An efficient and accurate non-staggered control volume method is proposed for the solution 
of model equations. This method is based on quadratic momentum interpolation and a high-
order convection differencing scheme. Special attention is given to numerical instability 
problems resulting from the non-linearities of the model as well as the release of a great 
amount of latent heat over a narrow temperature range and the strong coupling between the 
energy and momentum equations. To overcome these difficulties suitable numerical 
techniques were implemented. 

The proposed method is verified by the solution of a conduction controlled phase change 
problem. Satisfactory agreement with previously published is observed. Finally, the 
solidification of a binary mixture in a freezing cavity is solved and results are reported. 

2. INTRODUCTION 
Processes related to melting and solidification are widely encountered in many industrial 
applications [1], such as metal alloy casting, food freezing, ice forming, thermal energy 
storage, etc. Mathematical modelling of transport phenomena that occur during phase change 
is becoming an important tool for predicting the state of the final product. Problems related to 
improper control of the transport mechanisms include void formation, concentration variation 
of the dissolved component, and cracking due to thermal stresses. 

Due to the absorption or release of latent heat and the presence of complex interfacial 
structures that characterise the phase change of most materials, the exact solution of 
conservation equations is impossible [2]. The numerical models for solving phase change 
problems can be conveniently divided into two categories [2, 3]. The first category involves 
methods that utilise independent conservation equations for each phase. A moving-front 
practice is followed, where the mesh is continuously updated so that it always coincides with 



the phase change front. Such methods are referred to as multiple region or multiple grid 
methods and are usually applied on the analysis of pure materials. The second category 
consist of single region models that utilise a system of conservation equations that can be 
equally applied to both phases [4-8]. The latent heat evolution is accounted for in the energy 
equation by the enthalpy formulation [9-11]. In this case, no explicit conditions on the 
interface are required and the numerical solution can be carried out on a fixed grid. These 
methods are well suited for treating the phase change of mixtures where, the latent heat is 
evolved over a temperature range. 

The major advantage of the single region models is that the solution can be achieved by 
conventional numerical methods. However, the numerical treatment of phase change 
problems requires special attention. In order to predict the complex interfacial structures, 
high accurate numerical schemes must be used. Moreover, particular attention must be 
directed to the handling of the latent heat evolution associated with the phase change.  

In this paper, a numerical method for the solution of convection-diffusion controlled phase 
change problems is presented. The method combines high accuracy and numerical stability 
and can be used to analyse complex problems with minimal effort. 

3. PROBLEM DESCRIPTION 
The configuration of the test problem considered is depicted in Fig. 1. A binary mixture of 
initial concentration C  and initial temperature T  (the liquidus temperature), is 
located in a rectangular cavity insulated on three sides. At time 

init Tinit l>
t = 0 , the left side is cooled 

to a temperature T  so that freezing occurs. At later times the cavity contains three 
regions. A solid region near the left side, a liquid region near the right side and a mushy 
(solid and liquid) region in between. In most materials the mushy region has a dendritic 
crystalline structure. The system is influenced by diffusion phenomena and natural 
convection flow which is caused by the temperature and concentration gradients. 

Twall l<

 

 

Fig. 1.  A schematic of solidification in a rectangular cavity. 
 

4. MATHEMATICAL FORMULATION 
The behaviour of a phase change system can be described by the conservation equations for 
total mass, momentum, energy and species in the solid, liquid and mushy zones. In addition, 
appropriate relations are necessary for determining the mass fraction of solid as a function of 
temperature and concentration and also for representing the variation of mixture properties in 
the mushy region. The model adopted in this study is similar to that which has been 



developed by Bennon and Incropera [4], and can be derived from the mixture theory or 
through a volume averaged procedure [7]. 

4.1 The governing equations 
Conservation of mass 

 ( )∂
∂
ρ

ρ
t

div+ u 0=   (1) 

Conservation of momentum 

 ( ) ( )∂
∂

∂
∂t

u div u div grad u
p
x K

ul
l

l

l
ρ ρ μ

ρ
ρ

μ ρ
ρ

+ =
⎛
⎝
⎜

⎞
⎠
⎟ − −u  (2) 

 ( ) ( )∂
∂

∂
∂t

div v div grad v
p
y K

vl
l

l

l
ρv ρ μ

ρ
ρ

ρB
μ ρ
ρ

+ =
⎛
⎝
⎜

⎞
⎠
⎟ − + −u  (3) 

Conservation of energy 
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Conservation of species 
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In the above equations, the mixture density, velocity, enthalpy, concentration, thermal 
conductivity and diffusion coefficient are defined as follows:  

 ρ ρ= +g g ρs s l l , ,u u= fl l h f h f hs s l l= + , C f C f Cs s l l= +  

 k g k g ks s l l= +  D f Dl l=  (6) 

The term ρB, in the v-momentum equation, is the buoyancy term used to induce natural 
convection in the cavity. Assuming the Boussinesq approximation to be valid, this term is 
replaced by: 

 ( ) ( )[ρ ρ b bB g T T C Cx ref T ref C l ref= − + − ]  (7) 

where  are the reference values of temperature and concentration (usually coincide 
with the eutectic values),  is the density existing at the reference conditions and 

T Cref ref,
ρref b , bT C  

are the thermal and solutal expansion coefficients. The last terms of the right hand side of 
equations (5) and (6) represents the interactions of two phases in the mushy region and are 
derived on applying the Darcy’s law for flows in a porous media. Assuming the permeability 
K to be isotropic, it is evaluated from Karman-Kozeny equation: 
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4.2 Closure of the system 
In the continuum phase change model described above, the phase mass fraction and 
composition are indirectly determined from the equilibrium phase diagram. On assuming 
straight liquidus and solidus lines, the solid mass fraction can be expressed as: 
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mass fraction at the onset of the eutectic reaction. 

The enthalpies of two phases and the composition of the liquid phase are given by: 
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where  is the latent heat of phase change. hf

 

 

Fig. 2.  (a) A typical equilibrium phase change diagram and (b) the solid mass 
fraction - temperature relationship. 

 

5. NUMERICAL METHOD 
Each of the governing equations, except the energy one, can be recast in the form: 

 ( ) ( ) ( )∂
∂ t

div div grad Sρφ ρ φ Γ φ φ+ =u +  (11) 

by properly defining the quantities φ, Γ and . The numerical method used is based on a 
control volume formulation and the SIMPLEC algorithm is applied to resolve the pressure-
velocity coupling. The second order QUICK scheme, as presented in Ref.[

Sφ

12] is used for the 
discretization of the convective terms. A non-staggered grid is adopted and the cell-face 
velocities are evaluated with the quadratic momentum interpolation practice, ensuring high 
accurate results. Full details of the numerical method have been recently reported [13]. 

Properly handling the right hand side of the energy equation, it can be recast in the form of 
Eq. (11) with dependent variable the temperature of the system. However, in this way the 



determination of the solid mass fraction in the mushy region becomes impossible, because of 
the discontinuity of the ( )f Ts  curve at the eutectic point (Fig. 2(b)). Also, the abrupt 
increment of solid mass fraction and the release of the latent heat causes numerical 
instabilities, since the system oscillates between liquid and solid phase. A usual practice to 
overcome this problem is the introduction of a small artificial temperature range 

 at the jump, where the solid mass fraction depends linearly on temperature. 
This practice even though settles the singularity of mass fraction, does not improve the 
numerical instabilities while introduces modifications to the physical problem. 

[T Te e− +ε, ε]

In the present study a general predictor-corrector method proposed in [9] is followed. This 
methodis based on the direct discrete analog of equation (4): 
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In the predictor step the enthalpy is linearized using a Taylor expansion: 
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Using this expression, (12) can be written as: 
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Equation (14) is solved for the current temperature field TP
m+1 .  

In the corrector step the enthalpy field is updated via Eq. (14) from the current temperature 
field. Following this step, the values of temperature at nodes that are changing phase is 
corrected to be consistent with the corrected values of enthalpy. 

According to the definition of mixture enthalpy, the slope dh dTm  is calculated by 
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where the slope of solid mass fraction is analytically derived from Eq. (9). At the disconti-
nuity of the ( )f Ts  curve, the slope is approximated by an arbitrarily large value (e.g. 1010). 

It is well known that the control volume methods show poor convergence properties at large 
Rayleigh and Prantl numbers, due to the strong bi-directional coupling between the energy 
and momentum equations. In order to decrease this coupling a progressively smaller under-
relaxation factor is used in the momentum equations as follows.  

  (16) ω=ωinit e
rn−

where  is the initial under-relaxation factor, n is the iteration number and r determines 
the rate of decrease. A rate value of 0.5 is used. 

ωinit



6. RESULTS AND DISCUSSION 

6.1 Verification of the model 
In order to check the model and code, simulations of previous published results for a 
diffusion controlled phase change problem is undertaken. The problem concerns the 
isothermal solidification of a liquid in a impermeable and rigid box. The box has an initial 
temperature of  Tinit = °1535 C
T = °1150 C T

 and at time zero, the temperature at walls was set to 
 which is lower then the melting temperature wall s = °1500 C. The 

thermophysical properties of the liquid and solid are assumed to be equal and constant, 
, , ρ= 7200 kg / m3 c= 750 J / kg K k= 30 W / m K  and k= 262 5. k / kgJ K . Due to symmetry 

of the problem, only one quarter of the box is considered. A uniform grid of 40x40 nodes was 
used and a time step of 250 s. Plotted in Fig. 3 are the temperature history at the center of the 
domain and the variation of solid fraction in the box. The predicted results are compared with 
those presented by Swaminathan and Voller [10]. The overall agreement between results, 
verifies the accuracy of the model and the numerical code. 

 

 

Fig. 3.  (a) Temperature history and (b) progress of solidification. 
 

6.2 Implementation 
In order to show the capabilities of the proposed model, results from the solution of the test 
problem described in section 2 are presented. The problem domain and the boundary 
conditions are shown in Fig. 1. The geometric data and the thermophysical properties 
(approximating an aqueous ammonium chloride solution) are given in Table 1. A 40x40 
space grid, properly refined near the walls, and a fixed time step of 1 s were used. Iterations 
for each time step were terminated when the sum of absolute residuals in mass, momentum, 
energy and solute equations dropped below 1x10-4. 

The progress of solidification and thermo-solutal driven flow with time are shown in Figs. 
4(a)-(c) in which streamlines and contours of solid mass fraction are plotted. Once cooling is 
initiated at the left wall, a strong counter-clockwise flow field is established in the liquid. 
This field is driven by the high thermal gradients. The formation of three distinct regions 
(solid, mushy and liquid) is also indicated. Due to the presence of dendrites, the natural 
convection inside the mushy zone is very weak. As solid forms, the solute phase is rejected 
from the solid in the adjoining liquid, making it less dense than the bulk liquid. Due to 
thermal natural convection, this cold, solute-rich fluid, accumulates at the top of the cavity. 



At time t=300 s, a small clockwise circulating region appears at the bottom of the cavity, 
driven by the solute concentration gradients. Hence, a double-diffusive interface is formed, 
separating the solute-rich fluid from underlining fluid. The extend of macro-segregation is 
shown in Fig. 4(d), in which the contours of solute concentration at time t=100 s are plotted. 
This figure clearly shows the accumulation of solute-rich fluid at the top of the cavity. 
 

Table 1. Test problem data. 

Cavity dimensions H=L=0.025 m  
Initial conditions Tinit=600 K , Cinit=0.1 kg/m3 
Wall temperature Twall=200 K  
Specific heat cs=1870, cl=3200 J/kg K 
Thermal conductivity ks=0.4, kl=0.45 W/m K 
Viscosity μl=0.001 kg/m s 
Diffusion coefficient Dl=4.8x10-9 m2/s 
Latent heat hf=3.0x105 J/kg 
Expansion coefficients βT=4.0x10-5 K-1 , βC=0.025 
Eutectic temperature Te=250 K 
Melting point of pure material TM=630 K 
Eutectic concentration Ce=0.1 kg/kgm 
Equilibrium partition ratio κ=0.3 

 

 

Fig. 4.  (a), (b), (c) Streamlines and solid mass fraction contours at t=100 s, t=200 s, 
t=300 s, (d) contours of solute concentration at time t=100 s. 



7. CONCLUSIONS 
A stable and accurate numerical method for the solution of phase change problems has been 
presented. The method applied to a to the solidification of a mixture in a freezing cavity. The 
proposed method successfully predicts the phenomena observed in experiments such as the 
growth of the mushy region, the solute macro-segregation, and the double-diffusive flow 
patterns. From these results, it can be concluded that the proposed method can be applied to 
analyse various phase change processes. 
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