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Wall effects for motion of spheres in power-law fluids
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Abstract

The steady motion of spheres representing particles inside tubes filled with different fluids has been investigated
using both a finite-element and a finite-volume method. The rheology of the fluids has been modelled by the
power-law able to describe the shear-thinning (pseudoplastic) behaviour of a series of polymer solutions. New
results have been obtained for a series of tube/sphere diameter ratios in order to investigate the wall effects on
the drag exerted by the fluid on the sphere. The results agree well with previous simulations for an unbounded
medium (infinite diameter ratio). Experimental investigations have also been carried out and simulated, and the
results compare favourably with the experiments. The present simulations revealed the convergence of the drag
coefficient to a constant value independent of tube-to-sphere diameter ratio when the power-law index approaches
zero. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that confining walls exert an extra retarding effect on a sphere in free fall. Knowledge
of the wall effect is required if the fluid hydrodynamic drag of a sphere falling in a fluid medium of
infinite extent is to be estimated. Considerable research effort has been expended in studying wall effects
on a sphere falling freely in Newtonian fluids at the axis of cylindrical tubes. Consequently, a wealth of
information is now available on wall effects on sphere motion in Newtonian fluids, and indeed based on
a combination of numerical and experimental results, it is now possible to evaluate the wall correction
factor under most conditions of practical interest, namely, the value of the sphere Reynolds number and
the tube-to-sphere diameter ratios [1–4].

In contrast, little is known about the wall effects on spherical particles settling in power-law fluids.
Admittedly, a substantial body of information is now available on drag on spheres in power-law fluids,
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but most of such theoretical studies have not dealt with wall effects. Thus, the early studies based on the
use of variational principles [5,6] assume the sphere to fall in an infinite expanse of fluid. Likewise, most
numerical studies dealing with the calculation of drag on a sphere in non-Newtonian fluids [7–9] assume
the far away boundary to be situated typically at 20–50 times the sphere radius, thereby minimising the
contribution due to wall effects. Most of these studies have been reviewed elsewhere [10]. Caswell [11]
carried out a perturbation analysis for the creeping motion of a sphere in a Rivlin–Ericksen model fluid
in a cylindrical vessel and predicted the wall effects to be less severe than those in Newtonian fluids,
which is consistent with early findings by Tanner [12]. The analysis on the reduction of wall effect with
shear-thinning has also been reported earlier [8,12].

The assumption of the infinite expanse of fluid inherent in almost all analytical studies, however, poses
a serious experimental difficulty, for such experimental studies are always carried out in fall tubes of finite
size [13–15]. Another problem in the experimental studies arises from the fact that spheres will not fall
along the axis and/or rotate when the sphere/tube diameter ratio exceeds∼40%, and probably even lower
in viscoelastic fluids [12]. Among the numerous workers who have reported experimental values of drag
on spheres in power-law fluids, some have ignored the wall effects (e.g. [14,15]), while others [16,17]
have applied the same correction as that applicable for Newtonian fluids. Neither of these procedures is
generally applicable or justified. The few investigators, who have studied wall effects [8,12,13,18–20],
have concluded that the wall effect is less severe in power-law fluids than in Newtonian fluids under
otherwise identical conditions. This is so at least for the power-law index in the range 1≥ n ≥ 0.5 and for
sphere-to-tube diameter ratiosR/Rc up to 0.5. Most of these studies have also been reviewed elsewhere [10].

From the foregoing description, it is thus, safe to conclude that few theoretical results are available on
the extent of wall effects on a sphere settling in power-law fluids in cylindrical tubes even in creeping
flow conditions. This work endeavours to fill this gap in the current body of knowledge on this subject.
Extensive numerical results are reported herein encompassing wide ranges of conditions as 1≥ n ≥ 0
and 0 ≤ R/Rc ≤ 0.5. The latter is seen as the maximum value beyond which a sphere will fall off
centre and/or rotate [12]. The paper concludes by making detailed comparisons with previous numerical
simulations (for the unbounded case) and experimental results on wall effects in power-law fluids.

2. Mathematical modelling

The flow of a fluid around a sphere falling inside a cylindrical tube is shown schematically in Fig. 1. For
simplicity of the calculations, it is assumed that the sphere is set and the cylinder walls are moving with
the fluid velocityU. The flow is governed by the usual conservation equations for mass and momentum
under isothermal conditions, i.e.

∇ · vvv = 0, (1)

ρvvv · ∇vvv = −∇P + ∇ · τττ , (2)

wherevvv is the velocity vector,P the scalar pressure,τττ the extra stress tensor, andρ the density. In Eq. (2),
the inertia term has been included.

The constitutive equation that relates the non-Newtonian stresses with the velocity gradients is given
by the generalised Newtonian model:

τττ = ηγ̇̇γ̇γ , (3)
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Fig. 1. Schematic representation of the falling sphere-in-a-tube geometry along with notation and boundary conditions.

where γ̇ = ∇vvv + ∇vvvT is the rate-of-strain tensor andη the non-Newtonian viscosity given by the
power-law model by

η = m|γ̇ |n−1, (4)

wherem is the consistency index (Pa sn ) and n the power-law index (0< n < 1), while |γ̇ | is the
magnitude of the rate-of-strain tensor involving its second invariant.

The quantity of interest is the dragD on the sphere given by

D = 6πm

(
U

2R

)n−1

URX(n), (5)

whereU is the sphere velocity,R the sphere radius andX(n) a function of the power-law indexn.
When inertia is not neglected, the generalised Reynolds numberRe∗ is given by

Re∗ = ρU2−n(2R)n

m
. (6)

For the flow boundary conditions and referring to Fig. 1, we impose the usual no-slip boundary condition
on the sphere for the velocities, a plug profile upstream at the domain entrance and at the cylinder walls,
while at the centreline we have zero radial velocity. At the exit the mass balance for the fluid is satisfied.

3. Method of solution

The governing conservation equations, Eqs. (1) and (2) together with the constitutive Eq. (3) and the
appropriate boundary conditions (see Fig. 1) have been solved both by the finite-element method (FEM)
and the finite-volume method (FVM) for comparison. Progressively denser types of FVM grids used
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Fig. 2. Typical finite volume grids used in the computations forRc/R = 2:1.

in the computations are shown in Fig. 2 for the geometry case ofRc/R = 2. Different grids have been
used for different tube/sphere diameter ratios. For the FEM, the grids used have been shown in an earlier
publication [21]. Tables 1 and 2 show relevant information regarding the grids used with number of
control volumes, elements, and degrees of freedom, for the two different numerical methods.

Computations based on the FEM have been performed with the general FLOWCAD computer program
based on the Galerkin formulation of the conservation equations for non-Newtonian fluids (e.g. [21]).
Computations based on the FVM have been performed with the general FIVOS computer program [22],

Table 1
Details of the grids used with the FVMa

Grid Number of cells Number of unknownsb Cell size of control volume at stagnation point

Symmetry line Sphere wall

M1 200 600 2.23E−02 1.60E−02
M2 600 1800 4.39E−03 3.46E−03
M3 1000 3000 1.77E−03 1.65E−03
M4 1350 4050 1.02E−03 9.68E−04
M5 1500 4500 1.17E−03 8.01E−04

a Each node has six degrees of freedom. Case ofRc/R = 2:1.
b The number of unknowns is the number of degrees of freedom minus the number of boundary conditions.
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Table 2
Details of the grids used in the FEM [21]

Rc/R Elements DOF

2:1 476 4286
4:1 432 3889
8:1 477 4308

10:1 423 3819
20:1 720 6504
50:1 720 6504

extended to non-orthogonal field geometry, based on a non-staggered grid arrangement, using a modified
SIMPLE algorithm and the strongly implicit procedure (SIP). More details can be found in [23]. The
program has been modified to handle several non-Newtonian laws according to the generalised constitutive
Eq. (3).

The method of solution for the non-linear set of equations is direct substitution with continuation in
the power-law index (then-parameter). Solutions have been obtained down ton = 0.1, starting from
the Newtonian solution forn = 1 and proceeding with reductions of 0.1. The solution process is more
difficult to converge as the material becomes more shear-thinning (n � 1).

4. Results and discussion

A series of runs have been carried out with different grids and the two different methods (FEM and
FVM). At a given power-law indexn, a converged solution was considered to have been reached for the
set of continuity and momentum equations when the value of all residuals was less than 5× 10−4. In
Table 3 the total iterations needed are presented for the five grids of Fig. 2 andn = 1.0 (Newtonian fluid)
for the case of tube/sphere diameter ratioRc/R = 2:1. The iterations, or equivalently the computational
time, exhibit a linear dependence with grid density. The execution times needed to obtain convergence
for all primitive variables are presented in the same Table. Also in Table 3 is listed the calculated drag
coefficient, showing the convergence of the solution to the value of 5.9474 for dense grids [21]. These
results are also presented graphically in Fig. 3.

The calculations using the FVM have been performed on a PC equipped with a PENTIUM MMX-200
MHz processor. The size of the executable file was 320KB. The CPU time forn = 0.5 was approximately

Table 3
Calculated drag coefficient and total CPU time in seconds for computations by the FVM on a PC equipped with a Pentium
processor at 200 MHza

Grid Number of iterations Total CPU time (s) Drag coefficient

M1 62 10 5.5822
M2 198 50 5.8546
M3 334 121 5.9223
M4 452 245 5.9447
M5 504 271 5.9471

a Newtonian fluid andRc/R = 2:1.
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Fig. 3. Drag coefficient for flow of a Newtonian fluid around a sphere falling inside a tube for creeping flow conditions (Re≈ 0)
and geometry ratioRc/R = 2:1 for different grid densities (see Fig. 2).

20 min. On the other hand, the calculations with the FEM have been performed on a SGI-Power Challenge
XL workstation, and the CPU time for then = 0.5 was approximately 2 min.

Typical results from the simulations for the flow field (kinematics) and stress field (dynamics) are
shown in Fig. 4 for the case of 2:1 diameter ratio. The results are shown as contours in terms of the two
velocity components (ur anduz), the pressure (P) and the four stress components (normal stressesτ rr ,
τ zz, τ θθ , and shear stressτ rz). The velocities have been normalised byU, and the pressure and stresses
by m(U/R)n. Twenty contours have been drawn at equal intervals between the minimum and maximum
values, which are shown on the graphs by open and filled circles, respectively. It is seen that due to the
creeping flow conditions (Re≈ 0), the flow and stress fields are almost symmetric before and after the
sphere, and only in the stresses there are small changes shifted in the wake of the sphere.

In Fig. 5 the drag results as a function of the power-law indexn for creeping flow conditions (Re≈ 0)
obtained from the simulations with FEM and FVM are compared forRc/R = 2, 4, 8, 10, 20 and 50.
These results are also listed in Table 4 for the FVM (together with quadratically extrapolated results
to the unbounded case) and Table 5 for the FEM. It is seen that both FEM and FVM give almost
indistinguishable results, as expected by using such dense grids. A careful examination of the numerical
values shows that the FVM always gives slightly higher (at most by 0.05%) values than the FEM method,
which is known to provide an upper-bound on drag, while other methods, such as the boundary element
method, provide lower bounds [24]. Regarding the Newtonian case, the results when compared with the
Faxen formula deviate less than 0.3% as it was the case in our previous publication [21].

As the radii ratio increases beyond 10, the differences between Newtonian and power-law behaviour
become smaller, and they converge together for power-law indexn < 0.3. The drag correction converges
to a constant value in the vicinity of 1.18, independent of the tube/sphere diameter ratio, when the
power-law indexn = 0. The value of 1.18 is derived from Table 4 forn = 0 as the mean value of the drag
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Fig. 4. (a–h) Velocity, pressure and stress fields for the case ofRc/R = 2:1. Power-law fluid withn = 0.5.

coefficient for diameter ratiosRc/R = 2, 4, 8, 10, 20 and 50. The standard deviation of the mean value
is equal to 0.0094. It is interesting to note that the limiting value for flow of a sphere in an unbounded
Bingham body at infinite Bingham number (equivalent ton = 0 for a power-law fluid) is 1.17, as found
out by Beris et al. [25] and mentioned in our earlier publication [21].

Fig. 6 brings together results from different groups for the infinite case, approximated using quadratic
extrapolation from the three cases with ratiosRc/R = 8, 10 and 50. In particular, the results by Wasserman
and Slattery [5], Cho and Hartnett [6], and Gu and Tanner [8] are shown together with the present results.
The differences are due to the fact that the works by Wasserman and Slattery [5], and Cho and Hartnett
[6] are based on an upper-bound found by variational principles, while the work by Gu and Tanner [8] is
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Fig. 5. Drag coefficient for flow around a sphere falling inside a tube for creeping flow conditions (Re≈ 0) and geometry ratios
Rc/R = 2, 4, 8, 10, 20 and 50 for both FVM and FEM methods. The fluid is assumed to be shear-thinning obeying the power-law
model (Eq. (4)).

based on similar FEM results using rather sparse grids. Therefore, our results offer an improvement over
all previous findings for this case.

As mentioned previously, Chhabra and Uhlherr [20] reported extensive results on wall effects on
sphere motion in a series of power-law fluids. The material properties for three of these fluids are given in
Table 6. They measured the terminal settling velocity of numerous spheres in up to 10 cylindrical tubes
(of different diameters) filled with power-law fluids. The corresponding unbounded medium terminal

Table 4
The values of the drag correction factorX(n) from the FVM simulations for differentRc/R ratios

n 2 4 8 10 20 50 ∞
1.0 5.9471 1.9806 1.3551 1.2672 1.1194 1.0464 1.0055a

0.9 5.0957 1.9262 1.4030 1.3307 1.2146 1.1636 1.1371a

0.8 4.3686 1.8696 1.4439 1.3873 1.3014 1.2700 1.2558a

0.7 3.7422 1.8096 1.4774 1.4347 1.3767 1.3595 1.3554a

0.6 3.2021 1.7461 1.4995 1.4695 1.4360 1.4291 1.4322a

0.5 2.7411 1.6791 1.5108 1.4923 1.4754 1.4738 1.4787a

0.4 2.3414 1.6075 1.5077 1.4959 1.4900 1.4908 1.4973a

0.3 1.9953 1.5321 1.4850 1.4760 1.4752 1.4767 1.4839a

0.2 1.6931 1.4465 1.4331 1.4232 1.4233 1.4250 1.4334a

0.1 1.4267 1.3387 1.3361 1.3268 1.3269 1.3300 1.3386a

0.0 1.1847a 1.1934a 1.1718a 1.1708a 1.1723a 1.1818a 1.1834a

a By extrapolation.
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Table 5
The values of the drag correction factorX(n) from the FEM simulations for differentRc/R ratios

n 2 4 8 10 20 50 ∞
1.0 5.9441 1.9796 1.3544 1.2666 1.1190 1.0459 1.0035a

0.9 5.0931 1.9253 1.4023 1.3300 1.2140 1.1630 1.1367a

0.8 4.3664 1.8686 1.4431 1.3866 1.3007 1.2693 1.2568a

0.7 3.7403 1.8087 1.4767 1.4340 1.3761 1.3589 1.3546a

0.6 3.2005 1.7452 1.4988 1.4688 1.4353 1.4284 1.4293a

0.5 2.7397 1.6783 1.5100 1.4916 1.4746 1.4730 1.4755a

0.4 2.3402 1.6067 1.5070 1.4952 1.4893 1.4901 1.4924a

0.3 1.9943 1.5313 1.4843 1.4752 1.4744 1.4759 1.4778a

0.2 1.6923 1.4457 1.4324 1.4225 1.4226 1.4243 1.4261a

0.1 1.4260 1.3380 1.3354 1.3261 1.3262 1.3293 1.3327a

0.0 1.1841a 1.1928a 1.1712a 1.1702a 1.1771a 1.1812a 1.1840a

a By extrapolation.

Fig. 6. Drag coefficient for flow around a sphere falling inside a tube for creeping flow conditions (Re ≈ 0). Present results
extrapolated for the unbounded case in comparison with theoretical and computational results from other research groups.

Table 6
Power-law parameters for the test fluids

Test fluid TemperatureT (◦C) Densityρ (kg/m3) Consistency indexm (kPa sn ) Power-law indexn

V2 20.0 1000 0.095 0.90
V4 18.8 1000 0.082 0.86
V8 20.0 1000 0.340 0.67
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velocityU∞ of each sphere was evaluated by plotting the measured terminal velocityU versusR/Rc, and
then extrapolating these linear plots toR/Rc = 0 thereby yielding the value ofU∞. This, in turn, allows
the wall correction factor,f, to be defined as

f = U

U∞
. (7)

Evidently,f takes on values between 0 and 1. Based on a detailed analysis of their experimental data and
by analogy with the behaviour observed in Newtonian fluids, the wall correction factor,f, was found to be
independent of the sphere Reynolds number up to about 1, i.e. in the creeping flow regime. Furthermore,
the power-law index also was found to be an insignificant variable at 90% confidence level, at least in
the range of experimental conditions (1≥ n ≥ 0.5). Chhabra and Uhlherr [20] proposed the following
empirical correlation forf:

f = 1 − 1.6

(
R

Rc

)
. (8)

It is thus, appropriate to contrast the present numerical predictions with that of Eq. (8). It can easily be
shown that for a power-law fluid, the wall correction factorf is related to the drag correction factorX(n)
through the following simple expression:

f =
(

X∞
X

)1/n

, (9)

whereX∞ corresponds to the unbounded case (values reported in Table 4) andX relates to a specific value
of Rc/R, also listed in Table 4.

Fig. 7. Wall correction factor for flow around a sphere falling inside a tube for creeping flow conditions (Re≈ 0) and different
R/Rc ratios. Present computational results in comparison with experimental results for test fluid V2.
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Fig. 8. Wall correction factor for flow around a sphere falling inside a tube for creeping flow conditions (Re≈ 0) and different
R/Rc ratios. Present computational results in comparison with experimental results for test fluid V4.

Fig. 9. Wall correction factor for flow around a sphere falling inside a tube for creeping flow conditions (Re≈ 0) and different
R/Rc ratios. Present computational results in comparison with experimental results for test fluid V8.
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Figs. 7–9 contrast the present numerical results with the experimental results of Chhabra and Uhlherr
[20] for the perspex spheres settling in three of their test fluids over a range of values ofR/Rc. An
examination of these figures shows excellent match between predictions and experimental data up to
aboutR/Rc = 0.43. A similar sort of correspondence is observed for other test fluids and hence the
results are not shown here. Suffice it to add that while the experimental results, approximated here by
Eq. (8), suggest the power-law index not to be a significant variable, the numerical simulations suggest
that for a constant value ofR/Rc the value off rises with decreasing value ofn, thereby further reaffirming
that the wall effects diminish with increasing degree of pseudoplasticity. This finding is consistent with
the analysis of Caswell [11]. Finally, it is worthwhile to add that the present numerical simulations and
the predictions of Eq. (8) progressively diverge with increasing values ofR/Rc and/or with decreasing
values ofn.

5. Conclusions

The flow around a sphere falling inside tubes filled with shear-thinning fluids obeying the power-law
model, has been simulated by both the FEM and the FVM with similar results. The methods are comparable
in these kinds of problems in computational speed, but the FEM requires more space.

The numerical results are in very good agreement with previous experimental results. New results for
the drag around a sphere show that the tube/sphere diameter ratio has a strong influence on the drag,
showing an increase and then a decrease as the shear-thinning character of the fluid increases (lower
power-law indexn).

The present work has revealed that when the power-law indexn approaches zero, the drag coefficient
converges to a constant value of 1.18, which is independent of the tube/sphere diameter ratio.

The present results can be used for deducing the rheological parametersm andn of the model in such
experiments with polymer solutions, which are easy and fast to do in the laboratory. This is done by
knowing the diameter ratio and measuring the drag, and then from the present results finding out the
value ofn. Two different measurements can be used to deduce the value ofm.
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