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Abstract

A two-phase model for the simulation of sedimentation processes is presented. The model solves the continuity and

momentum equations for the pure-clear liquid and the sludge phases, and it is veri®ed against a well-known benchmark

problem, for which analytical solutions exist. Numerical simulations of a typical 1-D batch sedimentation process for

mono-dispersed particles are carried out and results are found to be in satisfactory agreement with experimental data

and model predictions of other researchers. A further expansion of the model to two-dimensions leads to predictions of

the dynamic behavior of settling tanks and the e�ect of the inclination angle on the sedimentation process. Ó 1999

Elsevier Science Inc. All rights reserved.
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1. Introduction

A wide variety of industrial separation technologies, such as clari®cation and thickening,
employ sedimentation processes in order to remove solid particles from liquid streams and to
thicken the sludge, that is formed. Typical batch sedimentation tests are used, in order to assess
the susceptibility of a suspension to a full-scale separation installation.

During batch sedimentation, a suspension of particles is allowed to stand in a settling tank (or
column). Usually, the tank is vertical to correspond to the traditional vertical settling tanks used
in muchmany industrial applications. Settling of particles occurs through the action of gravity,
leading to the formation of distinct settling layers and a sludge layer. The dynamic behavior of the
sediment (settling and compressibility capacity) is portrayed by the thickness and composition
changes of these layers.

Batch sedimentation was the subject of many research studies but most of them have been
restricted to vertical settling tanks and to 1-D processes. Settling velocities were estimated by the
standard or a modi®ed Stokes equation and particle interactions by empirical relationships.
Kynch [1], in his classical theory on batch sedimentation for mono-dispersed particles, introduced
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the particle conservation equation, in order to determine the sludge-liquid interface. Tiller [2] and
Auzerais et al. [3] proposed modi®cations and extensions to Kynch's theory mainly for the
particle conservation equation. They focused on the mechanism of the interactions between
particles, such as particle inertial e�ect, inter-particle forces and sludge compressibility. Auzerais
et al. [3] examined the e�ect of sludge compressibility, on the basis of various assumptions re-
garding the nature and mechanics of the compression. They also argued that for stable dispersion
of small particles, the inter-particle force is equivalent to the osmotic pressure and they added a
second-order (dispersion) term in the particle conservation equation.

Stamatakis and Tien [4] presented a model for the predictingon of the sludge-liquid inter-
facebatch sedimentation. Four years later Stamatakis and Tien [5] extended their model for
compressible sludges and included. The extended model is based on the solution of the conti-
nuity equation for both the particle and ¯uid phases. They used Darcy's law for the description
of the relative ¯uid/particle motion in the sludge region and empirical constitutive expressions
relating the sludge's permeability and porosity with the compressible stress. The model incor-
porates existing correlations for estimating the settling velocity of the particles derived by the
Stokes law.

The Stokes law in its standard or modi®ed version has been used also in research studies
concerning inclined settling tanks. Inclined settling tanks are frequently used in sedimentation
processes because they accelerate the sedimentation process and are suitable for continuous
processes. Davis et al. [6] presented a theoretical model for the sedimentation of polydisperse
suspensions in inclined settlers. The settling velocity of the particles was estimated by a modi®ed
Stokes equation multiplied by a hindrance factor, while the concentration of solids was calcu-
lated by the continuity equation. Wang and Davis [7] solved numerically the continuity equa-
tions of solids and liquid, using a modi®ed Stokes equation for the prediction of the velocity
coalescing drops.

Bailey et al. [8] assumed di�erent phases for the characteristic particle sizes and solved the
momentum and continuity equations for each `solid' phase. The velocity of the liquid phase was
calculated by the volume balance equation. The compressibility of the sediment was estimated by
the volume occupied by the solid particles in each time step. When a certain concentration of solid
particles was reached (maximum packing of the sediment), it was assumed that no movement of
liquid or solid could occur at this region.

Hanumanth et al. [9] modeled the sedimentation problem by solving the momentum and
continuity equations for the solid phase. The velocity of the liquid phase was related to the ve-
locity of a solid through a volumetric ¯ux balance and the volume fraction of the liquid was
considered to be the one satisfying the overall continuity equation. The compressibility of the
sediment was not taken into account. Experimental work was also done in order to con®rm the
model predictions.

In the present study a general model is formulated for the description of the 1-D or 2-D
sedimentation processes in vertical or inclined settling tanks. The model employs the continuity
and momentum equations for the two-phase ¯ow (liquid and sludge). The only empirical infor-
mation needed by the model is the friction between the two phases and the ®nal solids' con-
centration of the sludge. The settling velocities of the suspension are derived by the solution of the
momentum equations. In contrast to Bailey's model, the present approach does not assume a
continuous solid phase but a sludge phase (a mixture of clear liquid and solids), which is dispersed
in the clear liquid. Information for the mean particle diameter, the densities of the solids and of
the clear liquid and the maximum solids' concentration at the end of the process needs to be given.
Bailey's model needs much more information for the sludge phase than the present one, which is
not easily available. A comparison with Hanumanth' s model shows that the present model

882 M. Latsa et al. / Appl. Math. Modelling 23 (1999) 881±897



follows a more rigorous formulation because it takes into account the sediment compressibility,
through the assumption of a sludge phase, and through the use of the mixture viscosity in the
interface friction correlation.

In the following sections the model is initially veri®ed against a well-known benchmark
problem (1-D batch sedimentation of a dilute suspension) and its predictions are compared to the
analytical solution. The model is then expanded to the 1-D batch sedimentation process of mono-
dispersed particles and veri®ed against model predictions [5] and experimental data [9]. A ®nal
expansion of the model to two dimensions is demonstrated by simulating a 2-D settling tank with
inclined walls. The two velocity components and the volume fraction pro®les are calculated and
they disclose the time history of the sedimentation process, as well as the e�ects of the inclination
angle on the settling velocity of the particles.

2. The numerical model

2.1. Description of the problem

The system to be simulated is a rectangular tank of height L and length W (Fig. 1) which
initially contains a uniform mixture of clear liquid and solids and is either vertical or inclined.
During the sedimentation process, zones of di�erent concentrations in solid are formed. The most
signi®cant ones are the zone of the clear liquid and the zone of the sludge, which increase in size,
until a steady state is achieved.

The model assumes two phases. The ®rst phase is the pure liquid and the second phase
(sludge phase) is a mixture of solids and liquid. The concentration of the second phase in solids
is the maximum solids' concentration that can be achieved (rsmax) during the sedimentation
process.

The main assumptions used for the present model are the following:
· The interface force depends only on the friction between the solid particles and the liquid.
· The two phases are insoluble to each other. The main advantage of this assumption is that the

maximum packing of the sediment can be de®ned and therefore a special handling of the sed-
iment compressibility is not needed.

· Hindered settling is described by the interface friction force, which depends on the mean par-
ticle diameter and the solids' concentration.

2.2. Governing equations of the model

It is assumed that both phases coexist in time (t) and space (x, y). Any small volume in the ¯ow
domain contains at any time a volume fraction, ri of each phase. The sum of the volume fractions
of the two phases is always equal to unity, i.e.

r1 � r2 � 1; �1�
where index 1 stands for the sludge and 2 for the pure liquid phase.

Each phase is treated as a continuum in the ¯ow domain and the following governing equa-
tions can be derived for a 2-D sedimentation process [10].

Continuity:

o
ot
�riqi� �

o
ox
�riuiqi� �

o
oy
�riviqi� � 0: �2�

M. Latsa et al. / Appl. Math. Modelling 23 (1999) 881±897 883



Fig. 1. Geometry and boundary conditions.
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x-momentum:

o
ot
�riqiui� � o

ox
�riqiuiui� � o

oy
�riqiviui� ÿ o

ox
li

o�riui�
ox

� �
ÿ o

oy
li

o�riui�
oy

� �
� ÿri

oP
ox
ÿ riqigx � Cij�uj ÿ ui�: �3�

y-momentum:

o
ot
�riqiui� � o

ox
�riqiuivi� � o

oy
�riqivivi� ÿ o

ox
li

o�rivi�
ox

� �
ÿ o

oy
li

o�rivi�
oy

� �
� ÿri

oP
oy
ÿ riqigy � Cij�vj ÿ vi�: �4�

For each phase i, ui is the velocity parallel to the direction x, vi is the velocity parallel to the
direction y, qi is the density, li is the viscosity, P is the pressure and gx and gy are the accelerations
of gravity in the directions x and y, respectively.

The di�usion term

ÿ o
ox

li
o riui� �

ox

� �
in Eq. (3) can be expanded to:

ÿ o
ox

li
o riui� �

ox

� �
� ÿ o

ox
rili

o ui� �
ox

� �
ÿ o

ox
uili

o ri� �
ox

� �
;

where the ®rst term of the right part represents a Fickian type di�usion, and the second term
describes the phase di�usion, or as stated by others [16] the shear-induced di�usion due to con-
centration gradient.

The terms Cij�uj ÿ ui� and Cij�vj ÿ vi� in Eq. (3), represent the friction between the two phases,
which depends strongly on the type of the system under consideration. For the benchmark
problem, the interphase friction factor, Cij can be approximated by the following relationship
[13]:

Cij � Cfrirj�q; �5�
where �q � r1q1 � r2q2 and Cf is the magnitude of the interphase friction. For suspensions of
mono-dispersed solid particles of diameter dp, the following equation [12] can be used:

Cij � 3

4

CDrsql

dp

jus ÿ ulj: �6�
CD is the drag coe�cient, which is a function of the particle Reynolds number, Re:

CD � 24

Re
�1� 0:1Re0:75�; �7�

Re � us ÿ ulj jdpql

lm

; �8a�
where lm is the mixture viscosity, q1 is the density of the liquid and rs is the volume fraction of
solids �m3

solids=m3
mixture�. The mixture and the sludge viscosities are calculated by the correlation

proposed by Ishii and Zuber [12]:

lm � lf 1

�
ÿ rs

rs�max�

�ÿ2:5rs�max�
: �8b�
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The geometry and the boundary conditions, in the general case of an inclined settling tank, are
illustrated in Fig. 1.

2.3. Derivation of the ®nite volume equations

Eqs. (2)±(4) are integrated over ®nite control volumes. A staggered grid is employed in the
calculations [14], so that each velocity grid node lies between two scalar volumes. The volume
fractions of each phase are calculated on the scalar nodes.

2.4. Solution procedure

An iterative solution procedure is used to solve the ®nite volume equations. The procedure is
based on the Inter-Phase Slip Algorithm, IPSA [10], with an upwind di�erencing scheme.

2.5. The code

The computer code, TFLOW-2D, a modi®ed version of the TEACH code, was used in the
present study. TFLOW-2D was developed at the Computational Fluid Dynamics Section of the
Department of Chemical Engineering at the National Technical University of Athens for solving
two-phase two-dimensional problems, of plane or axisymmetric systems, involving parabolic or
elliptic ¯ows, with or without heat transfer.

3. Application of the model ± results and discussion

3.1. 1-D batch sedimentation test

Initially, the model has been applied and veri®ed in a simple, batch sedimentation test case in
the 1-D settling tank (Depth, H� 2.0 m) of Fig. 2. At time t� 0, a dense liquid (q1) rests at the

Fig. 2. The sedimentation test case.

886 M. Latsa et al. / Appl. Math. Modelling 23 (1999) 881±897



upper half part (r1� 1.0) of the settling tank, above an equivalent volume (r2� 1.0) of a lighter
liquid (q2). Flow in the tank is 1-D with gravitational force acting downwards. As time proceeds,
the lighter liquid rises to the top of the column, whilst the dense liquid sinks to the bottom
(Fig. 2(b)). Eventually, all of the dense liquid will rest on the bottom of the column and the light
liquid at the top (Fig. 2(c)). It has been observed [15] that the solution exhibits acute disconti-
nuities, a fact that makes numerical predictions di�cult.

Simulations of the transient behavior of the settling process are compared against analytical
results and PHOENICS' [11] numerical results presented by Markatos [15]. The analytical so-
lution can be obtained, only when density di�erences are small and the value of interphase friction
is high enough; and furthermore, it is necessary:

(i) to neglect the acceleration terms in the momentum equations and;
(ii) to adopt the drift ¯ux approximation [13].

The analytical solution is given in Appendix A.
In the present simulation, q1 and q2 are chosen equal to 1.0 and 0.999 kg/m3, respectively.

Eq. (5) is used for the calculation of the interphase friction factor and Cf is set equal to 1000. A
computational grid consisting of 82 cells has been used, while the time step was set equal to 1 s.
These values are identical to those used by Markatos [15].

The change of the predicted volume fractions of the dense liquid (r1) with depth (y) for various
times (t) is shown in Fig. 3 together with the computations of Markatos [15] and the analytical

Fig. 3. Variation of r1 with height (Y) and time (t).
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solution. The results of the present model are in better agreement with the analytical solution and
the wave-propagation speed is well predicted at all times, t. Overturning of the two liquids is
completed at t� 4000 s. The small discrepancy from the analytical solution, which is observed
near the relatively steep gradients of the r1±y curve, can be attributed to the numerical di�usion of
the low order discretization scheme.

3.2. 1-D batch sedimentation of mono-dispersed particles with sludge thickening

A suspension of monodispersed particles of diameter �dp � 75 lm� and initial volume fraction
�rS � 0:2 m3

solid=m3
mixt� is allowed to stand in a tank of depth, H� 1.0 m and width, W� 0.3 m.

The density of the particles �qs � 2500 kg=m
3� is greater than the density of the liquid �ql �

1000 kg=m
3� and they settle towards the bottom of the tank forming a sludge layer. The sludge

layer increases with time, but as it becomes thicker, it is compressed (thickening process) until it
reaches a constant height. During settling, three distinct layers are formed:

(i) the clear liquid layer at the top of the tank;
(ii) the sludge layer and;
(iii) the suspension layer, which has the same concentration in solids with the initial uniform
suspension.

The suspension layer diminishes with time, while the other two layers increase.
The change over time of the volume fraction pro®les of the solid phase, in the initial period of

settling, is shown in Fig. 4. The three distinct layers are clearly formed. The top of the tank is
occupied by pure clear liquid and the sludge layer ®lls the bottom. Between these two layers, there
is a suspension layer, in which the solid volume fraction remains essentially constant and equal to

Fig. 4. Solid particle volume fraction distribution at di�erent times.
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the initial value of the solids volume fraction (rS� 0.2). Model calculations are in good agreement
with the results of the model predictions of Stamatakis and Tien [5].

Fig. 5 portrays the locations of the two interfaces, i.e. the clear liquid-suspension and the
suspension-sludge interfaces, as a functions of time. During the process of sedimentation, which
starts at t� 0 and ends at t� 400 s, the sludge layer thickness increases with time until all particles
from the suspension enter the sludge layer. After t� 400 s, the thickness of the sludge layer de-
creases, due to thickening and asymptotically approaches a constant value, which is approxi-
mately equal to 0.35 m. The variation of the thickness of the sludge layer with time is also
presented in Fig. 6.

3.3. 1-D batch sedimentation of mono-dispersed suspension ± comparison with experiments of
Hanumanth et al. [9]

Silicon carbide particles settle into liquid aluminium with densities of qSiC � 3200 kg=m
3

and
qAl � 2400 kg=m

3
, respectively. The diameter of the particles is 90 lm, the tank's height 0.25 m

and the tank's diameter 0.3 m. The interface friction factor is calculated by Eq. (6). Simulations
were made for initial particle volume fractions of 0.05, 0.10, 0.15, 0.20 and 0.30. The results are
shown in Fig. 7. The simulations agree with the experimental values of Hanumanth et al. [9].

3.4. 2-D batch sedimentation in tanks with inclined walls

The batch sedimentation calculations of the previous case presented in Section 3.2 have
been repeated for the same input data for a settling tank having inclined walls. The 2-D

Fig. 5. Progress of sludge-suspension and clear-liquid-suspension interfaces.
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version of the model has been used to demonstrate the capability of the present approach
to depict the time history of the process by calculating the two velocity components and
the volume fraction pro®les. In the calculations the e�ect of the inclination angle, h, is
studied.

In Fig. 8 the velocity vectors of the sludge and the clear liquid at t� 300 s are shown for in-
clination angles h � 30�; 45�, and 60� to the vertical axis. The corresponding volume fractions of
the sludge and clear liquid as functions of time are shown in Fig. 9 for inclination angles
h � 0�; 30�; 45�, and 60�. The model predictions of Figs. 8 and 9 are in a very good qualitative
agreement with the ®ndings of Kapoor and Acrivos [16], who suggested that there are ®ve dif-
ferent regions of the ¯ow ®eld in a typical 2-D inclined settler. Unfortunately, a quantitative
comparison with Kapoor and Acrivos' data [16] was not possible, due to the lack of information
for the geometry of the tanks and the ¯owrates. Region A (Fig. 9) depicts the clear ¯uid liquid
reservoir, which is characterised by low liquid velocities (Fig. 8). Region B is the liquid layer
formed underneath the downward facing surface, which, under the action of buoyancy, is con-
vected rapidly towards the top of the vessel into region A. As shown in Fig. 8, region B is
characterised by high clear ¯uid velocities, parallel to the wall, with magnitudes, which increase
with h. The interface region C separates the clear ¯uid layer from the adjoining suspension region
D, within which the particle volume fraction remains constant through the sedimentation process.
Regions B, C and D are clearly indicated in Figs. 8 and 9, and concentration zones of the same
particle volume fraction are depicted. In regions A, B, C and D, the pure liquid velocity vectors
show a massive recirculation region occupying the whole area, while the velocity vectors of the
sludge are generally uni-directional parallel to the vertical walls. However, as h increases, the
liquid velocity vectors show an upward movement in region B, i.e. underneath the downward

Fig. 6. Sludge height.

890 M. Latsa et al. / Appl. Math. Modelling 23 (1999) 881±897



facing surface, indicating that in this region the particles are carried away by the strong clear ¯uid
current. In region E the solids are deposited with very low velocities, ¯owing down the inclined
side of the tank. This downward sludge ¯ow is accompanied by an upward ¯ow of the clear liquid
with very low velocities, as shown in Fig. 8.

In Fig. 10 the variation of the clear liquid±suspension interface with time, for various incli-
nation angles is shown. As expected, the sedimentation rate increases with h. When the sedi-
mentation period is over, thickening starts and the interface line becomes almost horizontal.
Practically, Fig. 10 suggests that the use of large values of h increases the sedimentation rate. This
is valid only within certain limits of h, which in real tube settlers are dictated by ¯ow stability
criteria [17].

Fig. 7. Progress of clear liquid-suspension interface ± comparison with experimental results [9].
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Fig. 8. Velocity vectors at time t � 300 s.
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Fig. 9. Particle volume fractions.
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4. Conclusions

This present work sets up an approach to the modeling of sedimentation processes with the
following distinctive features:
· The consideration of two-phases, the sludge and the clear ¯uid.
· The solution of the continuity and momentum equations.
· The interaction between the two phases, which is modeled through the interface friction force

and the mixture viscosity.
The model was validated against an analytical solution, numerical predictions of other re-

searchers and experimental data. It predicted well the 1-D sedimentation of a monodispersed
suspension and the position of the sludge, suspension and clear liquid zones were in agreement
with experimental results.

The extension of the model to two dimensions was also veri®ed qualitatively. The position of
the zones of di�erent solid-concentrations was in qualitative agreement with experimental ob-
servations. The inclination angle of the settler a�ected the formation of the zones and it was
observed, that the zones of the initial sludge concentration disappear with the increase of the
inclination angle, while the clear liquid and sludge zones occupy the largest part of the tank. An
increase of the inclination angle accelerates the sedimentation process and produces more clear
liquid than smaller inclination angles at the same time period. Although other researchers verify
this conclusion, it does not fully re¯ect the reality, because other phenomena, such as blocking of
the settler, prevent the sedimentation process and need to be seriously considered in a further
research work.

Fig. 10. Clear-liquid±suspension interface at x � 0:15 m.
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Appendix A

The continuity, Eq. (A.1), and momentum, Eq. (A.2), equations are:

o
ot

q1r1� � � o
oy

q1r1v1� � � 0;

o
ot

q2r2� � � o
oy

q2r2v2� � � 0;

�A:1�

o
ot

q1r1v1� � � o
oy

q1r1v1v1� � � ÿr1

oP
oy
� Cfr1r2�q v2� ÿ v1� ÿ q1r1g cosh;

o
ot

q2r2v2� � � o
oy

q2r2v2v2� � � ÿr2

oP
oy
� Cfr2r1�q v1� ÿ v2� ÿ q2r2g cosh:

�A:2�

Zero divergence is assumed

o�v
ox
� 0; �A:3�

which means

�v � r1v1 � r2v2 � 0: �A:4�
Combining the continuity and momentum equations, and assuming that the velocities of both
phases are almost similar:

r1q1

ov1

ot

�
� v1

ov1

oy

�
� ÿr1

oP
oy
� Cf �qr1r2 v2� ÿ v1� � r1q1g;

r2q2

ov2

ot

�
� v2

ov2

oy

�
� ÿr2

oP
oy
� Cf �qr1r2 v1� ÿ v2� � r2q2g:

�A:5�

Eliminating the pressure gradient

q1

ov1

ot

�
� v1

ov1

oy

�
ÿ q1

ov2

ot

�
� v2

ov2

oy

�
� q1� ÿ q2�g ÿ Cf �q v1� ÿ v2�: �A:6�

Assuming great values of the interface friction terms, the accelerating terms in Eq. (A.6) (left part)
can be ignored. Therefore the relative velocity of the two phases is

V � v1 ÿ v2 � q1 ÿ q2� �g
Cf �q

: �A:7�

When the densities are almost similar and because �q � 0:5 q1 � q2� �, it is v1 � 1ÿ r1� �V . Re-
placing v1 in the momentum equation:

or1

ot
� 1� ÿ 2r1�V or1

oy
� 0: �A:8�

Dividing the terms of (17) with V

or1

os
� 1� ÿ 2r1� or1

oy
� 0; �A:9�

where s � Vt.
Eq. (A.9) is a Burger equation, and therefore it can be solved with the method of character-

istics. Finally [13]:
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0 < s < D; r1 �
1;

0:5 1ÿ y=s� �;
0;

ÿD < y < ÿs;

ÿs < y < s;

s < y < D;

8><>:
D < s < 4D; r1 �

0;

0:5 1ÿ y=s� �;
1;

ÿD < y < ÿH ;

ÿH < y < H ;

H < y < D;

8><>:
H � 2

������
Ds
p

ÿ s; sP 4D; r1 �
0; y < 0;

1; y > 0:

�
�A:10�

In this particular case the ys values are between �ÿL=2; L=2�, thus D � L=2. Hence the dense
phase settles after a time period of s � 4D.

The above solution is valid only when the relative velocity of the phases V, is a function of time
and position (y). The variable s is equal to s � R V dt. Assuming V independent of y, the volume
fractions vary linearly with y

or1

oy
� ÿ or2

oy
� ÿ 1

2s
: �A:11�

Thus

ov1

ot
� v1

ov1

oy
� o

ot
r2V� � � r2V

o
oy

r2V� � � r2

dV
dt
� r1V 2

2s
;

ov2

ot
� v2

ov2

oy
� o

ot
r1V� � � r1V

o
oy

r1V� � � ÿr1

dV
dt
� r1V 2

2s
:

�A:12�

By replacing the second equation of Eq. (A.5)

r2q1� � r1q2�
dV
dt
� �q

V 2

2s
� q1� ÿ q2�g ÿ Cf �qV : �A:13�

Because the density di�erences are small, it is then q̂ � r2q1 � r1q2 � �q, and by substituting q̂
with �q, the equation becomes:

dV
dt
� V 2

2s
� q1 ÿ q2� �

�q
g ÿ CfV ; V � ds

dt
: �A:14�

For great time periods the left part of the equation could be approached by:

dV
dt
� V 2

2s
� V 2

2s
� V 2

2Vt
� V 2

2t
;

thus

V � � q1 ÿ q2� �=�q�gt
Cf t � 0:5

: �A:15�
Hence

s �
Z

V dt � q1 ÿ q1� �
�q

g
t

Cf

�
ÿ ln 2Cf t � 1� �

2C2
f

�
: �A:16�

When the friction factor is equal to zero

s � 0:25
q1 ÿ q2� �

�q
gt2: �A:17�
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