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Abstract

A finite volume technique is presented for the numerical solution of viscoelastic flows. The flow of a differential
upper-convected Maxwell (UCM) model fluid through an abrupt expansion has been chosen as a prototype example
due to the existence of previous simulations in the literature. The conservation and constitutive equations are solved
using the finite volume method (FVM) in a non-staggered grid with an upwind scheme for the viscoelastic stresses and
a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a new method for
handling the source term of the momentum equations is introduced. Improved accuracy is achieved by a special
discretization of the boundary conditions. Stable solutions are found for high Deborah numbers, further extending
the range of previous similar simulations with the FVM. The solutions have been verified with grid refinement and
show that at high elasticity levels, the domain length must be long enough to accommodate the slow relaxation of
high viscoelastic stresses. The FVM is proven quite capable for numerically handling viscoelastic models with low
computational cost and its use is recommended as a viable alternative to the solution of viscoelastic problems using
a variety of constitutive models. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Expansion flows; UCM constitutive equation; Viscoelasticity; Upwinding; Finite-volume method; Non-
staggered grid

1. Introduction

In the continuing effort to handle viscoelasticity through constitutive modelling and numerical
simulations, considerable effort has been expended for this dual task in the last 15–20 years.
Remarkable progress has been achieved in both aspects. From the modelling point of view, a
variety of constitutive models have been used, both of the differential and of the integral type
[1,2]. Regarding the former type, most of the efforts have been dedicated to the solution of the
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upper-convected Maxwell (UCM) fluid model, the Oldroyd-B, Phan-Thien/Tanner, Giesekus,
Leonov, etc. models. Regarding the latter type, the major emphasis has been on the K-BKZ
integral model and its variants, the Wagner model and the PSM model [3]. The current state of
affairs has shown that it is possible to model adequately polymer solution and polymer melt
behaviour by employing multi-mode models with a spectrum of relaxation times, either of the
differential or the integral type, with equivalent results [4,5]. Thus, the modelling efforts are still
very active and have shown steady progress, especially in well-defined flows with absence or
presence of singularities.

From the numerical point of view, many numerical methods have been used and a variety of
results have been produced. Early attempts were based on the finite difference method (FDM)
[6–8]. The majority of the simulations have been carried out with the FEM [9]. A serious
attempt originated with Tanner’s group, using the BEM [10,11]. Good results have also been
obtained by using spectral finite element methods (S-FEM) [12]. While each one of them has its
advantages and disadvantages, the search for even better and/or faster methods still continues.
In that respect, it was inevitable that the finite volume method (FVM) would also be tried within
the viscoelastic context, since this method is well-known and has been widely used with success
in other fields of computational fluid mechanics [13]. However, the viscoelastic simulations with
the FVM are very limited [14–17]. Quite recently, renewed interest has surfaced, notably by the
Phan-Thien/Tanner group [18–20] and by Luo [21].

In forming methods, e.g. extrusion and injection moulding, various polymers are shaped by
passing through a channel with an abrupt change of geometry. Several numerical studies have
focused on the viscoelastic flow through a sudden contraction or expansion. One of the
difficulties in the simulation of these flows is the severe change of geometry along the channel.
This causes very high stress levels, which enhance numerical instability. Early calculations [6,7]
were plagued by loss of convergence for relatively low values of the dimensionless Deborah
number (DeB0.3). Numerical difficulties arising by the presence of corners have been addressed
by Keunings [1].

A simple model, but very difficult to solve in the presence of a corner, is the UCM model. The
unknown complex flow near the singularity results in early loss of convergence when the grid
density or the fluid elasticity become substantial. The elasticity of the fluid expressed by De
poses an upper limit beyond which loss of convergence occurs. A previous study on viscoelastic
flow in an abrupt axisymmetric contraction using FVM was performed by Sasmal [17]. His
results are smooth and convergent for De up to 6.25, but for De over 1.5 the results are highly
grid-dependent. Simulations for the UCM fluid in expansion channels have not received much
attention in the literature. Recently, Darwish et al. [16] studied this geometry, but the grid
density was confined only to 336 cells within a short domain and the results for all primitive
variables are presented for De equal to 1.2 (or their corresponding Weissenberg number, We),
while for De equal to 2.4 only the velocity and pressure fields are presented as well as the
streamlines and they show unrealistic variation.

In this paper, we re-examine the flow of a UCM model fluid through a 4:1 sudden planar
expansion using a stable finite volume scheme. The solution method succeeds to provide
accurate numerical solutions in agreement with the analytical solutions in the fully-developed
regions of the flow field, for elasticity levels up to De=3.0 with a variety of grids to establish
results independent of grid density.
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In the following sections, the description of the problem, the mathematical modelling of the
flow and the solution method are cited. The discretization of the source term and the boundary
conditions are separately examined. Finally, the results of the numerical simulations are
presented and conclusions are drawn regarding the use of FVM for viscoelastic flow simulations.

2. Mathematical modelling

2.1. Conser6ation and constituti6e equations—dimensionless parameters

The problem geometry is shown in Fig. 1. It concerns the flow of a UCM fluid through a
planar 4:1 sudden expansion. The channel has an upstream length of L=4H and a downstream
length equal to Lres=10H (to match earlier simulations by Darwish et al. [16]) or 30H for flows
with higher elasticity levels.

The isothermal flow through expansions and contractions for incompressible fluids, such as
polymer solutions and melts, is governed by the usual conservation equations of mass and
momentum, i.e.

9 · 7=0, (1)

r7 · 97= −9P+9 · t, (2)

where 7 is the velocity vector, P is the scalar pressure, t is the extra stress tensor and r is the
density. In Eq. (2), the inertia term has been included.

The constitutive equation that relates the stresses t to the deformation history is the UCM
model, which in its differential form is written as [22]

t+lt
9
=mg; , (3)

where l is a constant relaxation time, m is a constant viscosity and g; is the rate-of-strain tensor
given by

Fig. 1. Schematic representation of the planar sudden expansion with notation and boundary conditions.
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g; =LT+L, (4)

where L is the velocity gradient tensor given by

L=97T, (5)

with T denoting the transpose operation. The symbol over the stress tensor in Eq. (3) denotes
the upper-convected derivative, i.e.

t
9
=
(t

(t
+7 · 9t−L · t−t · LT. (6)

For a two-dimensional system of rectangular co-ordinates (x, y) with velocity components (u, 6),
the conservation equation for continuity (1) can be written as
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the momentum Eq. (2) is given by
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For the flow boundary conditions and referring to Fig. 1, we have the usual no-slip boundary
condition on the walls for the velocities, fully-developed profiles upstream at the channel
entrance, while at the centerline we have zero axial velocity. At the exit, the mass balance for the
fluid is satisfied.

The dimensionless parameters often used to describe isothermal viscoelastic flows with inertia
are the Deborah number (De) and the Reynolds number (Re) defined by [22]

De=lg; =l
U
H

, (13)

Re=
rUH

m
, (14)

where g; is a nominal shear rate (usually taken as the wall shear rate in fully-developed flow), U
is a characteristic velocity and H is a characteristic length. It is seen that for a given fluid with
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Table 1
The terms in the conservation equations for a two-dimensional flow
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constant material properties l, m and r, both De and Re show a linear increase with average
velocity U or flow rate.

In the present simulations, we take U as the average inlet velocity and H as the half channel
height (Fig. 1) and increase the Deborah number by increasing the relaxation time. Note that in the
work of Darwish et al. [16], in their definition of the Weissenberg number (We), H is also taken as
half the channel height and thus, We=De.

3. Method of solution

The constitutive Eq. (3) is solved together with the conservation Eqs. (1) and (2) using the FVM.
Previous work with the FVM on viscoelastic flows is recorded by various research groups in their
papers [14–21]. Here we give some details about our own implementation of the method.

3.1. Numerical method

When employing the FVM, the governing equations are written in the following general form
[13]:

9 · (m78)=9 · (G98)+S, (15)

where m is either the density r or relaxation time l, depending on the conservation or constitutive
equation, 8 is the primitive variable, G is the diffusion coefficient and S is the source term. For the
form of primitive variable 8, diffusion coefficient G and source term S for each equation, refer to
Table 1.

The flow domain is divided into a number of control volumes over which Eq. (15) is integrated.
The information needed for the computation of variable 8 is its variation between consecutive
control volumes (the variable 8 is affected only by the value of 8 at neighbouring control volumes).
The control volume (cell) is the basic element of the discretization method. The boundaries of the
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cells are determined first and then grid points are placed at their center. The computational
points on the boundaries belong to control volumes reduced by one dimension (or by two
dimensions if they are at the corners of the computational domain). In this way there are no
special discretization equations for the boundaries or the boundary conditions.

The differential Eq. (15) to be numerically solved must be first integrated over the cell. The
residuals of the integration of Eq. (2) are used to control convergence during the solution
process. For each primitive variable a different residual is calculated. When all the residuals are
smaller than a predetermined set of values, then the solution has converged.

Each control volume has magnitude V=Dx×Dy×R (in the case of rectangular coordinates,
the radius R is equal to unity). Integrating Eq. (15) over the control volume as shown in Fig.
2 yields&

V

div(ru8) dV=
&

V

div(G grad 8) dV+
&

V

S dV, (16)

and converting to surface integrals in Eq. (16) according to the divergence theorem yields:77
A(r68) · n dA=

77
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&
V

S dV (17)

where A is the surface around volume V and n the unit vector normal to the surface.
The term S is generally assumed to be a linear function of variable f :

S=SC+SP8P. (18)

The integrals in Eq. (17) are calculated according to the following assumptions:
� the values of properties at the center of a control volume are equal to those prevailing on the

entire control volume and
� the values of properties at the center of the surface of a control volume are equal to those
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Fig. 2. Grid distribution for the computational domain.
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Fig. 3. Control volume centred around node P for a two-dimensional non-staggered grid along with computational
variables.

or �
(ru8)e−Ge

�(8
(x

�
e

n
Ae−

�
(ru8)w−Gw

�(8
(x

�
w

n
Aw+

�
(ru8)n−Gn

�(8
(x

�
n

n
An

−
�

(ru8)s−Gs
�(8
(x

�
s

n
As= (SC+SP8P)V, (20)

and in pseudo-linear form as

aP8P=%
I

a181+b, (21)

where the index I�{E, W, N, S} denotes summation over all the neighbouring to P nodes.
The terms in Eq. (21) have the following form:

aP=%
I

aI−SP Dx Dy, (22)

aI=DiA(�Pei �)+max(Fi, 0), (23)

b=SC Dx Dy, (24)

where Pei is the local Peclet number defined by Pei=Fi/Di , while A(�Pei �), i�{e, w, n, s} is a
function of the discretization scheme, Fi are the mass outflow rates through the corresponding
cell surface and Di are the diffusion terms. Note that the index I refers to the computational
nodes, while the index i refers to the control volume surfaces (Figs. 2 and 3).

For an upwind scheme used in the constitutive equations for the stresses:

A(�Pei �)=1, (25)

while for a hybrid scheme used in the momentum equations:
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A(�Pei �)=max(0,1−0.5�Pei �) (26)

A problem arises for the pressure computation in the source term of the momentum equations,
because there is no special conservation equation for pressure. The pressure has correct values
only when the continuity equation is satisfied for the velocity values derived from the
momentum equations. The term 9P in the momentum equation is integrated over each control
volume. The discretization equation, e.g. for the horizontal direction (Fig. 3), contains the term
Pw−Pe, which is the net force per surface unit applied to the control volume. The above term
has the following form:

Pw−Pe= [f x
WPP+ (1− f x

W)PW ]− [f x
PPE+ (1− f x

P)PP ], (27)

where fW
x , fP

x are the coefficients of linear interpolation for the east face of nodes W and P,
respectively [13].

The coefficients of linear interpolation are used to calculate the primitive variable on the face
between two nodes. For a uniform grid where fW

x = fP
x =0.5, the computed pressure values are

derived from two non-neighbouring cells, i.e. from a grid having half the density of the initial
one; the result is a reduced accuracy. In an even worse case, where an alternating pressure field
exists, the pressure difference Pw−Pe for each cell can be equal to zero and a uniform pressure
field is produced. The above difficulty is resolved, as Patankar [13] states, using a different grid
(staggered) for all primitive variables except pressure. In such a grid, the velocities and stresses
are computed and stored at different locations than the pressure. Of course, this technique
increases the complexity of the solution procedure.

In this work the primitive variables are stored on the same grid points and the resulting grid
arrangement is called non-staggered (Fig. 3). The advantage of a non-staggered grid is its
simplicity with regard to the geometry variables in the conservation equations [23,24].

To overcome the pressure computation problem in non-staggered grids, different methods are
used to compute the pressure at the surfaces of the control volumes. In the present paper, the
momentum interpolation method is used [24] (Appendix A). The computation of velocities at the
control volume surfaces is performed using a combination of the discretized equations for two
neighbouring cells. In the momentum equations, the variables which refer to the control volume
surfaces are computed by linear interpolation of the neighbouring values of the same variable.
This applies to all primitive variables except pressure [24].

3.2. Solution algorithm

Many algorithms have been developed over the years to calculate the pressure field. The first
widely used method was the semi-implicit method for the pressure-linked equation (SIMPLE)
[13]. Many modifications of the SIMPLE method have also been proposed, such as SIMPLE
revised (SIMPLER) [13] and the SIMPLE consistent (SIMPLEC) algorithm of Van Doormal
and Raithby [25]. However, these algorithms require extensions in order to handle viscoelastic-
ity. Thus, an alternative algorithm named pressure implicit momentum explicit (PRIME) was
introduced by Maliska and Raithby [26]. A modified PRIME algorithm was used by Darwish et
al. [16], but was found to be too time-consuming.
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In the present paper, a new algorithm to handle the UCM model is proposed. In this
algorithm the conservation equations for the stresses are written in terms of total stress applied
to a control volume, although other groups [17,19] write the conservation equations for the
stresses in terms of the extra stress tensor. Using the current formulation the computation of
stresses is much simplified. The steps of the present algorithm are as follows:
� Computation of stresses.
� Computation of extra stress gradients (explained in the next section).
� Special handling of source terms in the momentum equations (explained in the next section).
� Computation of velocities.
� Computation of pressure and correction of velocities.
� Convergence control and return to first step if necessary.
This algorithm is faster than the modified PRIME algorithm used by Darwish et al. [16], where
the pressure and stress fields were calculated twice for each iteration. With this algorithm the
total stress field is obtained directly, avoiding extra calculations spent on the addition of viscous
and extra stresses. The pressure and stress fields are calculated only once for each iteration.

3.3. Discretization of momentum equations

Eqs. (8) and (9) can be written in the general form of Eq. (15) using the following
transformation, [7]:
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where t % is the elastic part of the stress tensor t.
Substituting Eqs. (28)–(30) in the momentum equations and assuming constant viscosity, Eqs.
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In Eqs. (31) and (32) the viscous parts are discretized as the diffusion terms of the general Eq.
(15)[13], while the other terms on the right-hand side are treated as extra source terms.

The proper discretization of the source term can improve the behaviour of the numerical
scheme. In viscoelastic flows the convective terms are too small in comparison with the source
terms and special treatment of the source term is necessary. The source terms for the
x-momentum equation (Eq. (31)) can be written as

ÍÃ ÃÃ ÃÃ ÃÁ Ä

ÍÃ ÃÃ ÃÃ ÃÁ Ä ÍÃ ÃÁ Ä

ÍÃ ÃÁ Ä
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The calculation of term Sx1 requires the calculation of the first gradient of t %xx. The gradient of
t %xx can be calculated using two approaches:

(1) Calculate the first derivative of velocity in x-direction and calculate the values of t %xx in the
entire computational domain. After that, calculate the gradients at the nodes by interpolating
the values of t %xx on the faces between two adjacent nodes.

(2) Substitute Eq. (28) in terms of Sx1 giving ((t %xx)/((x)= ((txx)/((x)−2m((2u)/((x2) and
thus avoid the calculation of the first derivative of velocities.

In this paper the second approach has been used. The advantage in this calculation of the
second derivative is that the values at the node the derivative is referred to and the values at the
two adjacent nodes are participating in its calculation. On the contrary, for the first derivative
calculation only the values at the adjacent nodes participate [13]. A full explanation of the
discretization of terms Sx1, Sx2, Sy1, Sy2 is given in Appendix B.

The terms Sx3 and Sy3 are equal to zero when the continuity equation is satisfied. When they
are set to zero from the early steps of the iterative procedure, the algorithm is harder to
converge. The role of these terms is to stabilise the solution procedure without affecting the final
solution as they tend to zero when convergence is approached. This stabilising effect can be
enhanced if the relaxation technique introduced by these terms is increased. The enhancement is
performed by multiplying them with a constant UL.

This relaxation technique can be viewed as a specialized preconditioning of the matrix derived
from the discretized equations. Actually the enhancement of terms Sx3 and Sy3 through the
linearized source treatment results in the addition of a term on the left-hand side of Eq. (21) for
the current iteration, while on the right-hand side the same term from the previous iteration is
added. This really amounts to an under-relaxation procedure. Since UL is really an under-relax-
ation factor for highly non-linear problems, it is problem-specific, i.e. it depends on the nature
of the problem solved, the number of grid points, the grid spacing, the iterative procedure and
the De number.

The factor UL should be increased when the fluid elasticity becomes higher. During numerical
trials, it was found that a low value of UL resulted in divergence, while a high value resulted in
slow convergence of the numerical scheme. In the present simulations, UL was found to exhibit
almost an exponential relationship with fluid elasticity, namely the Deborah number. The
appropriate choice of UL was found by starting from UL=4 for De51.2. From the experience
gained from trial runs and knowing its exponential behaviour with De number, the next value
of UL was guessed for the higher De number computation. More details about this kind of
relationship for the problem at hand is presented in the results and discussion section.

Ì ÃÃ ÃÃ ÂÅ

Ì ÃÃ ÃÃ ÂÅÌ ÂÅ
Ì ÂÅÌ ÂÅ

Ì ÂÅ
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Using this new method of handling the source term by introducing the UL factor, the
well-known phenomenon of losing convergence with grid refinement [16] for high Deborah
numbers was overcome.

3.4. Discretization of boundary conditions at the wall

The computation of the Neumann boundary conditions along the wall affects dramatically the
solution accuracy. As the first gradients of all primitive variables are dominant in the source
terms of the conservation equations, a second-order accuracy for the primitive variables is
necessary. In this context quadratic polynomials [27] are used to describe the velocity variations
along the wall (Appendix C). Using this formulation the maximum error was reduced approxi-
mately by 10 orders of magnitude compared with results obtained by considering the velocity as
a linear function of displacement.

3.5. Solution of the discretized equations

In non-linear problems the equations are solved with iterative methods using an initial guess
for the primitive variables and giving an approximate solution. The iterative methods have the
advantage of minimum requirements regarding computer memory as they take advantage of
zero elements in the coefficient matrix. In this work, the strongly implicit procedure (SIP) [28]
is used. The SIP solution algorithm involves the direct, simultaneous solution of the set of
equations formed by modification of the original matrix equation. The modified matrix is
constructed according to two criteria: (a) the equation set must remain more strongly implicit
than in the alternating direction implicit (ADI) case; and (b) the elimination procedure for the
modified set must be economically efficient. These issues are addressed in detail in [29].

4. Results and discussion

The results were obtained using the code FIVOS developed in the Department of Chemical
Engineering at NTUA [30]. The code is adapted to handle viscoelasticity according to the
algorithm explained in the previous sections.

To establish confidence in the new FVM scheme implemented in this work, the solution of the
one-directional Poiseuille flow of a UCM fluid model between two flat plates was first tested.
This problem has an exact solution and has been extensively used as a test for various numerical
schemes. The agreement between the analytical and the FVM solutions was excellent even for
Deborah numbers up to 109. Also the experiments by Back and Roschke [31] have been
successfully simulated for the case of the abrupt circular channel expansion of a Newtonian fluid
certifying the consistency of the method for cases with changes in geometry.

4.1. Numerical simulation of the UCM model through a sudden expansion

In this section the simulations for the UCM model earlier undertaken by Darwish et al. [16]
are repeated and extended for higher Deborah numbers and denser grids using the same
differential constitutive equation.
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Fig. 4. The five grids used in the calculation of the 4:1 sudden expansion problem. Note that M1 and M2 resemble
the grids used in the previous work by Darwish et al. [16].

As shown in Fig. 1, we consider flow through a sudden 4:1 planar expansion. The dimensionless
Deborah number (De) defined previously has been used as the kinematic parameter controlling
both the flow kinematics and, through the constitutive equation, the flow dynamics. The values
of De are in the range between 0 and 3.0 (05We53 according to [16]), while the Re number
was set equal to 0.1 for all simulations as done in the previous work by Darwish et al. [16].

Table 2
Details of the grids used. Each node has six degrees of freedom

Size of smallest cell near expansion cornerNumber of unknowns1Grid Number of cells

Dx/H Dy/H

0.250M1 0.400210 864
375 1746 0.333 0.167M2

M3 0.250 0.1252976600
0.0830.18263361200M4

0.063 0.031M5 1972 10 752

1 The number of unknowns is the number of degrees of freedom minus the number of boundary conditions.
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Fig. 5. Number of iterations versus grid density for De=3.0 and Re=0.1 to achieve a tolerance of 5×10−4 for the
residuals of all variables. Note the linear convergence behaviour of the finite volume method.

For the finite volume discretization five grids have been used (Fig. 4 and Table 2). Due to the
non-staggered grid geometry, for each grid the number of cells is equal to the number of nodes.
The first one (M1) had 210 cells, giving a total of 864 unknowns. The second grid (M2) was
more dense, having 375 cells, giving a total of 1746 unknowns. Similar grids to M1 and M2 were
used by Darwish et al. [16] as the most dense grids for their simulations. A third grid (M3)
having 600 cells and 2976 unknowns was also used to gain experience on the fluid behaviour
through the expansion. To check the mesh dependency of the solution, a fourth grid (M4)
having 1200 cells and 6336 unknowns was used. The workhorse of the present simulations was
grid M5, having 1972 cells and 10752 unknowns.

The solution of a Newtonian fluid was obtained first, which in turn was used as an initial
guess for the subsequent simulations with the viscoelastic model. At a given flow rate (or
equivalently, Deborah number De), a converged solution was considered to have been reached
for the non-linear set of equations when the value of all residuals was less than 5×10−4. In Fig.
5, the number of total iterations needed are presented for several grids and De=3.0. The
iterations, or equivalently the computational time, exhibit a linear dependence with grid density.
The execution times needed to achieve a maximum residual 5×10−4 for all primitive variables

Table 3
Total CPU time in seconds for computations on a PC equipped with a Pentium processor at 100 MHz

Re Iterations Total CPU time (s)Grid De

0.8M1 0.1 209 25
0.1M1 2231.2 27

902890000.1M5 3.0
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Fig. 6. Residual versus number of iterations for De=3.0 and Re=0.1 with grid M5 for all the solution variables.

are presented in Table 3 for runs made on a personal computer (PC) with a Pentium processor
running at 100 MHz. According to Table 3, the total CPU time to reproduce the results by
Darwish et al. [16] is equal to 27 s, while to achieve a grid-independent solution for De=3.0
(starting from De=0) the time consumed was equal to 9028 s (i.e. 2.5 h).

Fig. 6 shows the residuals for all primitive variables with the number of iterations for runs
made at the highest De number and grid M5. The solution process required 9000 iterations. Fig.
7 shows the behaviour of the dimensionless pressure along the centerline of the expansion for
the highest De=3.0. Grid-independent results are obtained for grids more dense than M3.

Fig. 7. Dimensionless axial pressure distribution along the centerline for flow of a UCM fluid in a 4:1 sudden
expansion for different grids (De=3.0, Re=0.1).
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Fig. 8. Values of the UL factor as a function of Deborah number for grids M4 and M5. Note the exponential increase
as De increases.

Fig. 8 shows the values of the UL factor as a function of Deborah number for grids M4 and
M5. It is noticed that when UL increases the stability increases, however, more computational
time is needed. For every De there is a minimum value of UL to obtain a converged solution
with minimum computational cost. Since UL is an under-relaxation factor, its value is empirical
and was found by experience on trial computations. It was noted that it increases exponentially,
as shown in Fig. 8. This behaviour helped in guessing the next value for computations at higher
De numbers. For high De the value of UL gets higher, e.g. for the finest grid M5 the value of
UL for De=1.2 is equal to 4, while for De=3.0, UL equals 200. This exponential behaviour of
UL and the corresponding increase in computational time for the specific problem of flow
through a 4:1 expansion became more evident for De\3.0 (simulations have been actually
carried up to De=4.0) and it was one of the reasons for presenting results from computations
up to De=3.0 (the others being the total lack of recirculation in the reservoir, the uninteresting
velocity field and the need for a very long computational domain). The reasons for the difficulty
to achieve a solution in the Maxwell calculations at high De values and its connection to the
specific geometry (planar versus axisymmetric, contraction versus expansion, flow around a
sphere versus cylinder, etc.) is still an open subject for study. It is, however, clear that it is
associated with extremely high normal stress values, which seem unrealistic to be sustained by
any real fluid.

The Newtonian case (De=0.0) in the planar expansion geometry was studied to verify the
consistency of the method for two-dimensional problems. Fig. 9a shows the streamlines
normalized between the values of 1 at the centerline and 0 at the walls, with increments of 0.1
in between. Recirculation zones are formed in the reservoir of the expansion as is well-known,
with 0.19% of the flow rate rotating in a vortex envelope. Fig. 9b shows 20 evenly spaced isobars
between the maximum and minimum values made dimensionless with the mean stress (mU/H).
The overall pressure drop of 14.4 (dimensionless entrance correction nen=0.34) and the
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dimensionless vortex length (0.15) are in very good agreement with previous results [2]. Fig.
9c–e show 20 evenly spaced contours for the normal and shear stresses between the maximum
and minimum values made again dimensionless with the mean stress.

The viscoelastic simulations have been pursued first under exactly the same conditions as in
the previous work by Darwish et al. [16] for direct comparison. The reservoir length Lres was set
at 10H. Fig. 10a shows the streamlines for De=1.2 (or We=1.2 according to [16]) and

Fig. 9. Field contours for the flow of a Newtonian fluid in a 4:1 sudden expansion (De=0, Re=0.1) obtained with
grid M5: (a) streamlines; (b) isobars; (c) txx stress contours; (d) tyy stress contours; and (e) txy stress contours. The
contour values are equally spaced between the maximum and minimum values given on the graphs. Ten contours are
drawn for the streamlines and 20 contours for pressure and stresses.
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Fig. 10. Field contours for the flow of a UCM fluid in a 4:1 sudden expansion (De=1.2, Re=0.1) obtained with grid
M5: (a) streamlines; (b) isobars; (c) txx stress contours; (d) tyy stress contours; and (e) txy stress contours. The contour
values are equally spaced between the maximum and minimum values given on the graphs. Ten contours are drawn
for the streamlines and 20 contours for pressure and stresses.
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Fig. 10. (Continued)

Re=0.1, for which there are complete results for all variables from the previous viscoelastic
computations for this problem. It is noted that viscoelasticity results in reducing the extent and
intensity of the recirculation zones in the reservoir corners of the sudden expansion. The reason
is that when the fluid is entering a channel of larger height, it will try to relax its stresses along
the streamlines. For incompressible viscoelastic fluids this causes expansion in the transverse
flow direction [32]. This behaviour is opposite to what occurs in a contraction geometry, where
the fluid relaxes its stresses by increasing the recirculation zones.

Fig. 10b shows the isobars for De=1.2 and Re=0.1. The increase in relaxation time (or
elasticity level) results in an increased pressure drop through the expansion with respect to the
Newtonian result. Fig. 10c shows the contours for the normal stresses txx. The viscoelasticity of
the fluid is manifested by the appearance of large normal stresses along the inlet channel that
stretch out into the reservoir in contrast with the Newtonian case (Fig. 10c). Fig. 10d shows
contours of the normal stresses tyy, while Fig. 10e shows the corresponding contours for the
shear stresses txy.

As mentioned above, this viscoelastic case (De=1.2, Re=0.1) has been studied earlier by
Darwish et al. [16], who present similar results for the streamlines, isobars and stress contours.
When compared to previous solutions [16], the present solutions are smoother and physically
more realistic (i.e. the pressure contours along the inlet channel are normal to the wall and the
shear stress contours are parallel to the wall).
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Fig. 11. Field contours for the flow of a UCM fluid in a 4:1 sudden expansion (De=3.0, Re=0.1) obtained with grid
M5: (a) streamlines; (b) isobars; (c) txx stress contours; (d) tyy stress contours; and (e) txy stress contours. The contour
values are equally spaced between the maximum and minimum values given on the graphs. Ten contours are drawn
for the streamlines and 20 contours for pressure and stresses.

A further increase in the De number showed that the convergence was still good, but that
physically unrealistic values were obtained for the field variables due to a short reservoir having
a length of Lres=10H. We believe this is the reason why the results by Darwish et al. [16] for
We=2.4 and Re=0.1 are not physically correct for the pressures and the streamlines and they
are not shown for the stresses. A severe bending of the streamlines will occur when a short
domain is used to impose fully-developed velocity profiles at the inlet and/or outlet. Thus, it
became obvious that a longer domain was necessary in order for the stresses to relax for higher
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Fig. 12. Dimensionless first normal stress difference (N1) distribution along the centerline for flow of a UCM fluid in
a 4:1 sudden expansion for different De numbers (Re=0.1, grid M5).

elasticity levels. A reservoir length of 30H was then assumed and the simulations were repeated
for grid M5. The runs at De=1.2 and Re=0.1 showed that for this case a length of 10H was
adequate, since the results did not differ appreciably by having reservoir lengths of either 10H
or 30H.

Further increasing the De number resulted in a further suppression and finally in a total
elimination of the recirculation zones in the reservoir as shown in Fig. 11a, where the

Fig. 13. Dimensionless vortex length versus Deborah number for flow of a UCM fluid in a 4:1 sudden expansion
(Re=0.1, grid M5).
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streamlines are presented for De=3.0 and Re=0.1. A bending of the streamlines is noticed
towards the walls as the fluid enters the sudden expansion. The pressure contours (Fig. 11b)
along the channel are vertical only at the inlet and they are stretched deeply into the expansion
reservoir. The maxima and minima are also much higher. The same type of behaviour is
observed for the normal and shear stresses as presented in Fig. 11c–e. This happens because the
elastic behaviour of the fluid is much stronger than the viscous one.

The values of normal stresses provide useful information on the fluid behaviour in processing
and their first difference N1=txx−tyy can be measured experimentally. Fig. 12 provides the
distribution of the dimensionless first normal stress difference N1 along the centerline for three
values of the Deborah number. It is seen that it is zero in the inlet channel, goes through a high
increase after the entry in the expansion and then returns to zero farther and farther away as the
elasticity level increases. This figure also shows how the maxima get transported down the
channel and that a sufficiently long domain is necessary for the stresses to fully relax back to
zero.

Another feature of the problem at hand is the dimensionless vortex length X defined as [1,2]

X=
Lv

2Hres
, (35)

where Lv is the length of the vortex and 2Hres is the reservoir height (Fig. 1). Fig. 13 presents
X as a function of Deborah number. The dimensionless vortex length becomes reduced from its
Newtonian value of 0.15 down to 0.0 at De=3.0. It is thus established that viscoelasticity
reduces and finally eliminates the small Newtonian vortex in expansions for creeping flows
(small Re numbers).

5. Concluding remarks

In this paper, the flow of a UCM model fluid through a 4:1 sudden planar expansion has been
studied using a stable finite volume scheme. The choice of the problem was due to its earlier
study by another research group [16] by the same method, thus allowing a direct comparison.
The solution method succeeds in obtaining accurate values for all variables (including the
stresses) at elasticity levels up to De=3.0 with a variety of grids to establish results independent
of grid density.

Using the FVM, correctly balanced forces over each control volume are obtained. As a result,
the stresses near the singularity yield finite forces on the corner boundary. In addition, the
non-staggered grid, where the same set of control volumes is used for all primitive variables,
offers great geometrical simplicity, especially for posing the boundary conditions near the
singularity. To enhance the accuracy of the method, the boundary conditions were imposed via
quadratic polynomials. Accurate calculation of the primitive variables yielded accurate calcula-
tion of their first gradients, which are dominant in the source terms of the momentum equations.
The numerical stability of the method depended on the order of precision in the calculation of
source terms.

The conservation equations of stresses were transformed using the elastic–viscous split
method introduced by Perera and Walters [7]. The convective terms for the stresses were
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computed using a first-order upwind scheme, while for the velocities a hybrid scheme was
used. A new method to discretize the source term of the momentum equations was intro-
duced and the obstacle of flow type change occurring at high De was overcome. For low De
and grid density, the solution was compared against other numerical results available in the
literature [16] and found to give smoother and physically more correct results. For high De
values (De\2.0), it was found necessary to extend the domain appreciably in order to give
enough length for the high viscoelastic stresses to relax. For De\3.0, it was found that the
stresses become exceedingly high, thus requiring a much longer domain, severe under-relax-
ation and a very high computational time, while the velocity field remained uninteresting
(lack of recirculation).

The present simulations reinforce the point made previously by the Phan-Thien/Tanner
group that the FVM can be used as a viable alternative for the solution of viscoelastic
problems. The results are accurate and offer an improvement over previous numerical solu-
tions. Although the present study has been applied to a UCM fluid in a relatively simple
geometry, it can be further extended to other more realistic constitutive equations, such as
the Phan-Thien/Tanner or Giesekus–Leonov models, etc. and to other geometries encoun-
tered in polymer processing.
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Appendix A. Momentum interpolation

The momentum interpolation technique is used to avoid uniform pressure field in a non-
staggered grid. From the momentum equations (Eqs. (10) and (11)) and referring to Fig. 3,
when solving for the velocity uP and subtracting from the source term the part which
contains the pressure, i.e. b=bP−AP(Pe−Pw), we obtain1

uP=
% au

nbPunbP

au
P

+
bu

P

au
P

−
Ax

P

au
P

(Pe−Pw) (A1)

Similarly for the velocity uE :

uE=
% au

nbEunbE

au
E

+
bu

E

au
E

−
Ax

E

au
E

(Pee−Pe) (A2)

The velocity at the east surface of the cell with P as its center is:

1 The exponents represent the primitive variable.
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ue=
% au

nbeunbe

au
e

+
bu

e

au
e

−
Ax

e

au
e

(PE−PP) (A3)

The unknown terms in Eq. (A3) are computed by linear interpolation of Eqs. (A1) and (A2) as
follows:

% au
nbeunbe

au
e

+
bu

e

au
e

= f x
P

:% au
nbEunbE

au
E

+
bu

E

au
E

;
+ (1− f x

P)
:% au

nbPunbP

au
P

+
bu

P

au
P

;
(A4)

1
au

e

= f x
P

1
au

E

+ (1− f x
P)

1
au

P

(A5)

Substituting Eq. (A4) in Eq. (A3) yields:

ue= f x
P

:% au
nbEunbE

au
E

+
bu

E

au
E

;
+ (1− f x

P)
:% au

nbPunbP

au
P

+
bu

P

au
P

;
−

Ax
e

au
e

(PE−PP) (A6)

and substituting the term ((� au
nbEunbE)/(au

E))+ (bu
E/au

E) from Eq. (A2) and the term
((� au

nbPunbP)/(au
P))+ (bu

P/au
P) from Eq. (A1), Eq. (A6) takes the form:

ue= f x
PuE+ (1− f x

P)uP+ f x
P

Au
E

au
E

(Pee−Pe)+ (1− f x
P)

Au
P

au
P

(Pe−Pw)−
Ax

e

au
e

(PE−PP) (A7)

Setting:

ume= f x
PuE+ (1− f x

P)uP (A8)

and

uce= f x
P

Au
E

au
E

(Pee−Pe)+ (1− f x
P)

Au
P

au
P

(Pe−Pw)−
Ax

e

au
e

(PE−PP) (A9)

Eq. (A7) can be written:

ue=ume+uce (A10)

where ume is the velocity derived from the linear interpolation of velocities uP and uE at point e
and uce is the velocity derived from the momentum interpolation at point e.

Appendix B. Discretization of the source term

The source terms of the momentum equations (Eqs. (33) and (34)) include the terms Sx1 and
Sx2. The term Sx1 is calculated as:

Sx1=
(t %xx

(x
=
(txx

(x
−2m

(2u
(x2 (B1)
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The term (txx/(x is added in the source assuming quadratic variation of txx along the
x-direction. Thus, (txx/(x is written as (2a1x+b1) Dx Dy. For the calculation of a1 and b1, the
same practice as that described in Appendix C was used, giving:

b1=
txxP

−t %xxW

xP−xW

−a1(xP+xW) (B2)

a1=

txxE
−txxW

xE−xW

−
txxP

−txxW

xP−txxW

xE−xP

(B3)

The term −2m(((2u)/((x2)) is calculated by integrating it over the control volume V :&
VP

−2m
(2u
(x2 dV=

& yn

y s

& xe

xw

−2m
(2u
(x2 dx dy= −2De(uE−uP)+2Dw(uP−uw) (B4)

Consequently:

Sx1= (2ax+b) Dx Dy−2De(uE−uP)+2Dw(uP−uw) (B5)

The term Sx2 is calculated as:

Sx2=
(t %xy

(y
=
(txy

(y
−m

(

(y
�(u
(y

+
(6

(x
�

(B6)

The term (txy/(y is calculated following the same method as in term Sx1. The term −m((/
(y)(((u/(y)+ ((6/(x)) is calculated by integrating it over the control volume V :&

VP

−m
(

(y
�(u
(y

+
(6

(x
�

dV=
& yn

ys

& xe

xw

−m
�(2u
(y2+

(26

(y(x
�

dx dy

= −Dn(uN−uP)+Ds(uP−uS)−m(6ne−6nw−6se+6sw) (B7)

Consequently:

Sx2= (2a2y+b2) Dx Dy−Dn(uN−uP)+Ds(uP−uS)−m(6ne−6nw−6se+6sw) (B8)

where:

b2=
txyP

−txyS

yP−yS

−a2(yP+yS) (B9)

a2=

txyN
−txyS

yN−yS

−
txyP

−txyS

yP−yS

yN−yP

(B10)

The term Sy1 is calculated as:

Sy1=
(t %yy

(y
=
(tyy

(y
−2m

(26

(y2 (B11)

The term (tyy/(y is calculated following the same method as the derivative of stress in term Sx1.
The term −2m((26/(y2) is calculated by integrating it over the control volume V :
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&
VP

−2m
(26

(y2 dV=
& yn

yz

& xe

xw

−2m
(26

(y2 dx dy= −2Dn(6N−6P)+2Ds(6P−6S) (B12)

Consequently:

Sy1= (2a3y+b3) Dx Dy−2Dn(6N−6P)+2Ds(6P−6S) (B13)

where:

b3=
tyyP

−tyyS

yP−yS

−a3(yP+yS) (B14)

a3=

tyyN
−tyyS

yN−yS

−
tyyP

−tyyS

yP−yS

yN−yP

(B15)

The term Sy2 is calculated as:

Sy2=
(t %xy

(x
=
(txy

(x
−m

(

(x
�(u
(y

+
(6

(x
�

(B16)

The term (txy/(x is calculated following the same method as the derivative of stress in term Sx1.
The term −m((/(x(((u/(y)+ ((6/(x)) is calculated by integrating it over the control volume V :&

VP

−m
(

(x
�(u
(y

+
(6

(x
�

dV=
& yn

ys

& xe

xw

−m
(

(x
�(u
(y

+
(6

(x
�

dx dy (B17)

= −m(−une+use−unw+usw)−De(6E−6P)+Dw(6P−6W) (B18)

Consequently:

Sy2= (2a4x+b4) Dx Dy−m(−une+use−unw+usw)−De(6E−6P)+Dw(6P−6W) (B19)

where:

b4=
txyP

−txyW

xP−xW

−a4(xP+xW) (B20)

a4=

txyE
−txyW

xE−xW

−
txyP

−txyW

xP−xW

xE−xP

(B21)

The terms Sx3 and Sy3 are discretized as follows:&
VP

Sx3 dV=UL
& xe

xw

& yn

ys

m
(

(x
�(u
(x

+
(6

(y
�

dy dx (B22)

&
VP

Sy3 dV=UL
& yn

ys

& xe

xw

m
(

(y
�(u
(x

+
(6

(y
�

dy dx (B23)

In the source term of the x-momentum equation the terms of Eq. (23) Sx5 is included adding in
SC the term:
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SC,x=UL
� mAe

(dx)e

uE+
mAw

(dx)w

uW+m(6en−6wn)−m(6es−6ws)
n

(B24)

and in SP :

SP,x= −UL
� mAe

(dx)e

+
mAw

(dx)w

�
(B25)

while in the source term of the y-momentum equation the terms of Eq. (23) Sy5 is included
adding in SC :

SC,y=UL
� mAn

(dy)n

uN+
mAs

(dy)s

us+m(uen−ues)−m(uwn−uws)
n

(B26)

and in SP :

SP,y= −UL
� mAn

(dy)n

+
mAs

(dy)s

�
(B27)

Appendix C. Neumann boundary conditions

The discretization of velocity gradients on the wall boundaries affects dramatically the
accuracy of the numerical method. A method to obtain second-order accuracy for the primitive
variables is to use quadratic polynomials for posing the boundary conditions on the wall [27],
adapted for a non-uniform grid.

The wall force is entered into the discretized u-momentum equation as a source. The wall
shear stress value is obtained from

tw=m
(u
(y
)
P

(C1)

The shear force Fs is now given by:

FS= −twA (C2)

where A is the wall area of the control volume.
The appropriate source term in the u-equation is defined by:

S=mA
�(u
(y
�)

wall
(C3)

The computation of the u-gradient in the y-direction in Eq. (C3) is carried out assuming that u
is a quadratic function of y :

u=ay2+by+g (C4)

giving:

(u
(y

=2ay+b (C5)
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Applying Eq. (C3) to grid points N, P and S, the following equations are derived:

uN=ay2
N+byN+g (C6)

uP=ay2
P+byP+g (C7)

uS=ay2
S+byS+g (C8)

In the above system of equations:

b=
uP−uS

yP−yS

−a(yP+yS) (C9)

a=

uN−uS

yN−yS

−
uP−uS

yP−yS

yN−yP

(C10)

Substituting Eq. (C5) in Eq. (C3) the following equation is valid:

S=mA(2ay �wall+b) (C11)

Finally the source term is obtained by substituting the values of a and b in Eq. (C11):

S=
m

V

:
2

uN−uS

yN−yS

−
uP−uS

yP−yS

yN−yP

yN+
uP−uS

yP−yS

−

uN−uS

yN−yS

−
uP−uS

yP−yS

yN−yP

(yP+yS)
;
Dx (C12)
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