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SUMMARY 
Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a 
square cavity. The control volume method is used to solve the conservation equations for laminar and 
turbulent Rows for a series of Rayleigh numbers (Ra) reaching values up to  10". The k--E model has been 
used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform 
(stretched) grids have been employed with increasing density to guarantee accurate solutions, especially 
near the walls for high Ra-values. AD1 and SIP solvers are implemented to  accelerate convergence. Excellent 
agreement is obtained with previous numerical solutions, while some discrepancies with others for high 
Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with 
experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard 
k--E model with logarithmic wall functions, which gives significant overpredictions. 
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1. INTRODUCTION 

Natural convection flow in enclosures has many thermal engineering applications such as in 
double-glazed windows, solar collectors, cooling devices for electronic instruments, gas-filled 
cavities around nuclear reactor cores and building in~ulation.'-~ The problem is also of interest 
to geophysicists in many naturally occurring situations where fluid motion results from buoyancy 
forces due to temperature  gradient^.^ Furthermore, this problem as depicted in its simplified 
schematic representation of Figure 1 is a good comparison test for the performance evaluation 
of both numerical techniques and turbulence models (benchmark p r ~ b l e m ) . ~ - ~  

Batchelor' was the first to state the mathematical formulation of the problem and give 
approximate solutions. Poots4 performed calculations by hand and provided the first solution 
graphs for isotherms and streamlines inside the cavity. Hellums and Churchills performed 
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numerical calculations and compared their results with experimental data by Martini and 
Churchill' for natural convection in a cylinder. Ostrach" performed calculations for high values 
of Rayleigh number (Ra) but for fluids with high Prandtl number (Pr), while the Grashof number 
(Gr) was set to unity (Ra = Gr Pr). Wilkes and Churchill" and Gill" gave approximate 
solutions for the flow at the boundary of the cavity. Elder'3v14 performed calculations using a 
system of five equations; however, some stability problems arose, so he assumed that the normal 
gradients of vorticity vanish on the horizontal boundary layer of the cavity. Aziz and Hellums' 
were apparently the first to perform calculations for both two- and three-dimensional flow of 
fluid heated from below. The final form of the problem was defined by De Vahl DavisI6 and 
computational results were presented for Rayleigh numbers up to lo6. Results on heat transfer 
and the effect of variation in the Prandtl number were also presented. 

A detailed study of the laminar solution of the problem (Ra up to lo5) was given by 
MacGregor and Emery' together with experimental results covering a wide range of Prandtl 
numbers. Many correlations of Nusselt number (Nu) and Ra concerning experimental results 
can also be found in this paper. Jaluria and Gebhart18 worked on vertical natural convection 
flows. Their work revealed the process occurring during the transition from laminar to turbulent 
flow near a flat vertical plate when the surface heat flux is uniform. The interaction of the velocity 
and temperature fields during the transition and the effect on Nu were also investigated. 
Mallinson and De Vahl Davis" presented detailed three-dimensional calculations for laminar 
flow. The calculations were performed for different values of Prandtl number and aspect ratio 
of cavity dimensions. 

Markatos and Pericleous2' were the first to introduce a turbulence model in their calculations. 
They performed two-dimensional simulations for Rayleigh numbers up to 10' and presented 
a complete set of graphs for different values of Ra (Pr = 0.71), including isotherms, streamlines 
and velocity fields. Correlations between Ra and Nu were also presented and good agreement 
was found between simulations and experimental data by MacGregor and Emery.' The same 
turbulence model (k--E) was used by Ozoe et ~ 1 . ~ '  for two-dimensional calculations up to 
Ra = 10" and for aspect ratio A = 2. Results for the flow field and for heat transfer were 
presented together with a parametric study of the k--E model constants. Oscillations were 
encountered for the streamfunction at high Ra. 

Henkes et al. 22 performed two-dimensional calculations using various versions of the k--E 
turbulence model. These versions included the standard k--E and low-Reynolds-number k--E 
models. Their results reached a steady, non-oscillating state even for high Ra (up to 1014), much 
the same as Markatos and Pericleous." Simulations were performed for air and water. Results 
for Nu were also presented. They showed that the low-Reynolds-number k--E model has a 
non-unique solution for the same value of Ra. A comparison with experimental results for Nu 
showed the superiority of low-Reynolds-number k--E models. Their work gave a very good 
definition of the problem and an attempt was made to specify many parameters (geometry, k--E 
constants, grid discretization) so that results by different researchers are directly comparable. 

Fusegi et al. 23924 presented three-dimensional calculations for laminar flow for Ra up to 10". 
Their graphs revealed the three-dimensional character of the flow. Comparisons were made with 
two-dimensional simulations and differences were reported for the heat transfer correlation 
between Nu and Ra. 

Other works have also been published concerning experimental and numerical results for 
cavities with  partition^,^.^ basically for laminar flow. Effects such as radiation from the cavity 
walls and participating medium have also been for low values of Ra. Some experimental 
studies for high Ra have been presented.26 

Since good numerical solutions and experimental data exist in the literature,6-8s20*22 the 
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simulation of the flow field in a square cavity has been suggested as a benchmark test.6 It 
is the purpose of the present paper to rework the problem for laminar and turbulent flow 
for a wide range of Ra. Turbulence is modelled by the standard k--E model and the effect 
of the assumed wall functions on heat transfer is investigated. A series of solution graphs 
will be presented to illustrate the flow and temperature field for different Ra-values. Comparison 
of the present results with previous experimental and numerical data will also be presented. 
Finally, conclusions will be drawn about the present state of calculations for this benchmark 
problem. 

2. MATHEMATICAL MODEL 

The problem under consideration is depicted schematically in Figure 1. The flow domain 
is the interior of a 2D square cavity (aspect ratio A = 1) of width W The horizontal walls 
of the cavity are assumed to be perfectly adiabatic (q = 0), while the vertical walls are kept 
isothermal with the left wall at  high temperature TH and the right wall at low temperature 
T,. The interior of the cavity is filled with air and all properties are calculated at a reference 
temperature T,. Owing to heat transfer through the vertical walls, density changes result 
in a recirculating flow. An increasing Ra causes a pass from a laminar to a turbulent flow 
state. According to Elder,13 the flow becomes turbulent at Ra greater than lo6; however, 
according to the present numerical calculations, this transition point depends on the formulation 
of the turbulence model. Keeping a temperature difference of 20 K between the vertical 
walls of the cavity and establishing the reference temperature T, at 293 K, an overheat 
ratio 6 = (TH - T,)/T, = 0.068 is obtained. For this reference temperature and assuming air as 
the working fluid, the value of Pr equals 0.71 and is kept constant in all the calculations. The 
small value of 6 allows the use of the Boussinesq approximation for the fluid. In order to 
obtain a higher Ra, the cavity dimensions were increased while keeping the same temperature 
difference AT. Table I shows the significant increase in cavity width as Ra goes from lo3 
to 1 o ' O .  

Figure 1. Schematic representation of cavity problem for natural convection flow along with relevant notation and 
boundary conditions 
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Table I. Cavity widths used in calculations 

~~~ ~ ~ ~ 

1 0 3  7.81 x 10-3 1 0 7  1.68 x 10-1 

1 0 5  3.63 x 109 7.81 x 10-1 
lo4 1.68 x 10' 3.36 x lo-' 

lo6 7.81 x 10" 1.68 

The Reynolds equations for a Boussinesq incompressible fluid under steady state conditions 
in a two-dimensional geometry take the 

au au 

ax ay 
-+ -=o ,  

au au 

u - + u - =  

while the energy equation becomes 

(3) 

In the above equations all Reynolds stresses are incorporated into the diffusion terms using 
a turbulent viscosity v, given by 

v, = c, k2/&, (4) 

where c, is a constant and k and E are calculated from their transport equations 

The two terms Pk and Gk appearing above correspond to the shear and buoyancy production 
rates of the turbulent kinetic energy respectively and are given by 

The values for all constants appearing in the transport equations for k and E are summarized 
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Table 11. Constants used in k-E turbu- 
lence model 

CP 0.09 UT 1 .o 
C l ,  1.44 uk 1 .o 
C 2 r  1.92 ue 1.3 

in Table 11. As far as the constant cJa is concerned, the expression suggested by Henkes et al. 22 

is used: 

U 
cgE = tanh I I .  

The values for u, u, ?; k and E next to the walls are calculated using the wall functions 

T +  = 2.195 ln(9y') + 13.2Pr - 5.66, 

Y+ = YUT/V, 

u +  = u/u,, 

The above wall functions are valid for forced convection flow with small pressure gradients 
and for y +  > 11.5. Other wall functions have also appeared recently in the l i t e r a t ~ r e . ~ ~ - ~ l  An 
alternative is to use wall functions only for k and E ~ ~ * ~ ~  at the first computational grid point 
after the wall. In this work both modelling techniques will be tested, i.e. use of logarithmic wall 
functions for all variables (u, o, 7: k, E )  or for k- and &-values alone. Much of the success enjoyed 
in the prediction of wall-bounded shear flows has depended upon the application of wall 
f ~ n c t i o n s ~ ~ - ~ '  that relate surface boundary conditions to points in the fluid away from 
boundaries. The above logarithmic wall functions are checked here for natural convection flows. 
The case of not using wall functions at all for all variables is not desirable, since it is 
computationally very intensive for resolving adequately the very thin boundary layers. 
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Apart from the turbulence model and the constants appearing in it, the relevant independent 
dimensionless parameters of the mathematical model are 

A = H J W ,  (19) 

P r  = V J U ,  (20) 

Ra = g / lATH3PrJv2 .  (21) 

3. NUMERICAL SCHEME A N D  METHOD OF SOLUTION 

The mathematical model described above is solved using a finite volume approach.32 The 
equations are integrated over elementary control volumes that are located around each node of 
a mesh. The location of the nodes is calculated using a stretching function so that the node 
density is higher near the walls of the cavity. Figure 2 shows the node distribution using the 
stretching function (left half) as opposed to a uniform distribution (right half). A uniform 
distribution appears to be better suited for the region near the centre of the cavity for low Ra, 
but since the influence of the steep gradients near solid walls dominates at high R a  (and at the 
centre the flow is stratified), the use of a non-uniform grid becomes necessary. A similar 
approach is followed in other works.20-22 The velocity components are calculated at a staggered 
grid32 while the scalar variables are calculated at the main (not-staggered) grid. Provision has 
been taken so that with the increase in the dimensions of the cavity at least five computational 
points are kept inside the boundary layers near each wall. 

The convection terms of the equations are discretized using a hybrid upwind differencing 
scheme (HDS)32 because of its simplicity and improved stability properties. Although a 
higher-order scheme would be more accurate than the HDS, the grid resolution used in this 
work ensures the correct handling of the artificial diffusion associated with the HDS. In addition, 
an attempt has been made to balance economy (number of cells, computational time), accuracy 
and stability.22 Therefore the HDS has been chosen as standing between the central differencing 
scheme (CDS) and upwind differencing scheme (UDS) used in older works".'6*20 and the 

Figure 2. Uniform (right half) and stretched (left half) discretization grids (80 x 80 nodes) 
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QUICK scheme used in more recent ones.23v24 The SIMPLEC33 method is used to solve for 
the pressure, because it was shown to have an improved behaviour over SIMPLE34 as far as 
stability and convergence speed of the numerical scheme are concerned. 

Owing to the density of the grid and the requirement for fast convergence, a mixed technique 
was used for the solution of the final algebraic equations, in which both alternating direction 
implicit (ADI) and strongly implicit (SIP) methods35 are used. For each Ra the calculations 
were started using as initial field values the results of a previous Ra solution. The system of 
algebraic equations was initially solved by a line-by-line (LBL) solver with ADI. After a number 
of iterations, switching to SIP was used to accelerate convergence. This technique was found to 
be extremely useful, especially for calculations at high Ra with the turbulence model. 

The convergence criterion used was that the sum of the balance errors over all volumes should 
be less than 

The special arrangement used for the grid nodes (non-uniform spacing) gives good results 
even for relatively coarse grids. Figure 3 shows the vertical velocity component calculated at 
the mid-height of the cavity for Ra = lo6 using 40 x 40, 60 x 60 and 80 x 80 grid nodes. The 
results are virtually the same even with the coarser grid. However, for higher values of Ra an 
increased number of nodes was necessary in order to keep enough points inside the boundary 
layers where the major gradients occur. At the interior of the domain the stratification of the 
flow allows the use of a relatively coarse grid. In the present calculations it was found that a 
grid of 80 x 80 nodes gave good results for all values of Ra up to 10". This is in agreement 
with other numerical calculations." At higher Ra an increased number of nodes was necessary 
as suggested by Markatos and Pericleous,20 who used grids with 100 x 160 nodes for calcula- 
tions up to Ra = The increased number of nodes requires extra computer memory and 
makes the calculations time-consuming but helps in keeping good density and aspect ratio of 
the cells, thus improving the accuracy of the results. 

for all variables. 
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Figure 3. Profiles of v-velocity component at mid-height of cavity for Ra = lo6 and different grid sizes 
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4. RESULTS AND DISCUSSION 

4.1. Convergence of solution 

In Figure 4 the convergence history for calculations at Ra = 10' is presented. The convergence 
of the present numerical scheme was checked with extra care for this value of Ra, because it is 
about this point that the turbulence model starts deviating from the laminar approximation. 
For this reason many extra iterations were performed disregarding the preset convergence 
criterion. A change in slope of the curves is evident after the first 1000 iterations where the 
switch to the SIP solver occurs. It is clear that this solver reduces dramatically the residuals up 
to a certain point (after another 1000 iterations), where the slope of the curves decreases again, 
this time because the accuracy of the computer has been reached (all calculations were performed 
using single-precision computer arithmetic). 

Starting from a laminar solution, a converged turbulent solution could be calculated within 
about 200 iterations. For most cases 50 iterations were run with the AD1 technique and about 
150 with the SIP solver. For all calculations an extra 100 iterations were performed to make 
sure that a converged solution has been found and also that the new iterations produce no 
change in the values of the primary (u, u, T) variables near the four corners of the cavity. Figure 
5 shows the convergence history of a turbulent solution corresponding to the solution presented 
in Figure 4. Most of the calculations were performed on an IBM-3090 mainframe computer and 
a typical run for a turbulent solution required about 20 CPU minutes. 

Using the converged temperature field, the local (Nu)  and mean (Nu) Nusselt numbers at the 
hot wall were calculated as 

- 
Nu = loH Nu dy. 

For the evaluation of the temperature derivatives appearing above, a three-point and a 
five-point formula have been used. As mentioned elsewhere,20 the five-point formula gives 
erroneous results when Ra exceeds a value of 10'. However, in the present results no significant 
difference was found. This is mainly due to the careful arrangement of the grid nodes near the 
cavity walls that provides a dense grid with many computational points within the boundary 
layer. 

4.2. Laminar flow field solution 

In the present work calculations were performed using either the laminar or the turbulent k-E 
model. In the latter case logarithmic wall functions were used either for all variables (u, v, IT; k,  E )  
or just for k and E.  Calculations for Ra = lo3 and lo4 were performed on uniform grids, while 
non-uniform grids were used for higher values. 

The results of the calculations are presented in graphical form in Figure 6. Isotherms, 
streamlines and the velocity field are shown for different Ra-values. The flow is symmetric, i.e. 
for any variable f ( x ,  y) the following relationship holds for every location (x, y): 

f ( x ,  Y) = fW - x, H - Y). (24) 

A slight deviation from symmetry that appears at the highest Ra is apparently due to the grid 
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Figure 4. Convergence history for laminar solution. Residuals versus number of iterations at Ra = 10': (a) energy 
balance residual, (b) u-momentum residual, (c) o-momentum residual 
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Figure 5. Convergence history for turbulent solution. Residuals versus number of iterations for k--E model at Ra = 10': 
(a) energy balance residual, (b) u-momentum residual, (c) u-momentum residual 
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L 

Figure 6. Laminar flow field at different Ra-values: (a) lo3, (b) lo4, (c) lo5, (d) lo6, (e) lo8, (f) 10". For each value, 
isotherms (left), streamlines (middle) and velocity vectors (right) are presented. Isotherms are drawn at 283(1)303 K, 

except for (f) where 283(2)303 K is used 

resolution, the limited (single) precision of the computer arithmetic and the significant difference 
in magnitude between the values of the centre of the cavity and those obtained at the wall 
boundary layers. This deviation from symmetry has been also mentioned by Markatos and 
Pericleous'' for high values of Ra. 

For low values of Ra a central vortex appears as the dominant characteristic of the flow. As 
Ra increases, the vortex tends to become elliptic and finally breaks up into two vortices at 



706 G.  BARAKOS, E. MITSOULIS AND D. ASSIMACOPOULOS 

(d) 

Figure 6. (Continued) 

Ra = lo5. The two vortices move towards the walls, giving space for a third vortex to develop. 
This third vortex is very weak in comparison with the other two and, as discussed in detail by 
other the rotation is again clockwise owing to a very small positive tempera- 
ture gradient at the centre of the cavity. For even higher values of Ra the velocities at the centre 
of the cavity are very small compared with those at the boundaries where the fluid is moving 
fast, forming vortices at the lower right and top left corner of the cavity. The vortices become 
narrow, improving the stratification of the flow at the central part of the cavity. 
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Figure 7. Turbulent flow field at different Ra-values: (a) lo3, (b) lo4, (c) los, (d) lo6, (e) lo8, (0 loLo. For each value, 
isotherms (left), streamlines (middle) and velocity vectors (right) are presented. Isotherms are drawn at 283( 1)303 K, 
except for ( f )  where 283(2)303 K is used. All calculations are performed using the k--E model with logarithmic wall functions 

The shape of the isotherms shows how the dominant heat transfer mechanism changes as Ra 
increases. For low Ra-values almost vertical isotherms appear, because heat is transferred by 
conduction between hot and cold walls. As the isotherms depart from the vertical position, the 
heat transfer mechanism changes from conduction to convection. Figure 6 shows that the 
isotherms at the centre of the cavity are horizontal and become vertical only inside the very 
thin boundary layers. 
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Figure 7. (Continued) 

4.3. Turbulent flow field solution 

When using the turbulence model, the flow field at low Ra-values is similar to that obtained 
from laminar flow computations, as expected. The results, however, are not identical because of 
the inclusion of a turbulent viscosity in the k--E model. This similarity continues up to Ra = lo6, 
which we consider as the limit of the turbulent approximation to the laminar solution. For 
higher values of Ra the model gives a purely turbulent solution. If log-functions are used only 
for k and E,  a similar behaviour is noticed but the turbulence model gives now a laminar 
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Figure 8. Temperature distribution at mid-height of cavity for different Ra-values: (a) laminar solution, (b) k--E solution 

approximation for Ra up to 10'. The effect of the additional viscosity is that vortices found in 
laminar flow disappear for Ra less than lo*. Figure 7 shows that for the laminar approximation 
the flow is dominated by a central vortex, which becomes elliptic as Ra increases and breaks 
up after the model starts giving a purely turbulent solution. The shape of the isotherms shows 
that heat transfer occurs by a conduction mechanism for the whole laminar approximation range 
of Ra. For higher Ra the flow becomes stratified just like in the laminar case. This is clearly 
shown in Figure 7(f). 

Further results are illustrated in Figure 8, where the temperature profile is given at the 
mid-height of the cavity. For the laminar solution (Figure 8(a)) the profile shows the rapid change 
in the heat transfer mechanism from conduction to convection. From a 45" slope at low Ra the 
temperature profiles become horizontal lines in the cavity centre and all temperature gradients 
are located in the interior of the boundary layers which have developed near the vertical walls. 



710 G. BARAKOS. E. MITSOULIS AND D. ASSIMACOPOULOS 
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u 

Figure 9. Distribution of u-velocity component at mid-width of cavity for different Ra-values: (a) laminar solution, (b) 
k--E solution 

Near the centre of the cavity the curves change slope and there is a vortex corresponding to 
each change. In Figure 8(b) the situation becomes different and the laminar approximation of 
the model presents no slope changes. Again for higher Ra the curves become almost straight at 
the centre, giving a stratified flow. 

Figures 9 and 10 present similar profiles for the u- and u-velocity components respectively. 
The laminar case (Figure 9(a)) shows a gradually decreasing velocity near the centre and the 
development of narrow boundary layers along the walls. This is also true for the laminar 
approximation of the turbulent solution, but the results for high Ra show thicker boundary 
layers. A similar behaviour is demonstrated in Figure 10. Again the laminar case (Figure lqa)) 
and the laminar approximation curves of the turbulent solution (Figure 10(b)) are different. In 
both figures the changes in the velocity direction correspond to slope changes of the temperature 
profile and lead to vortex development. 
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Figure 10. Distribution of u-velocity component at mid-height of cavity for different Ra-values: (a) laminar solution, 
(b) k--E solution 

5. COMPARISON WITH EXPERIMENTAL AND NUMERICAL DATA 

Few experimental data can be found in the literature concerning primary variables (u, u, T). 
Most data are presented as correlations between Ra and mean Nusselt number at the hot wall. 
However, Krane and J e ~ s e e ~ ~  give some experimental data for primary variables for laminar 
flow and Ra = 1.89 x lo5. In Figure 11 these results are compared with the present numerical 
solution for the same Ra which was obtained within 50 iterations starting from our solution for 
Ra = lo5. There is good agreement for the temperature measured at the mid-height of the cavity, 
but the measurements (by laser Doppler velocimetry) for the velocities give slightly higher values 
for the maxima at the boundary layers. A small discrepancy also exists for the location where 
the maxima occur. The same kind of discrepancy was observed by Fusegi et when they 
compared their three-dimensional laminar solution (Ra = lo5) with the same experimental data. 
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Figure 11. Comparison of present numerical calculations (laminar solution) with experimental data of Krane and 
J e ~ s e e ’ ~  for Ra = 1.89 x lo5 
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Table 111. Comparison of laminar solution with previous works for different Ra-values 

This work Markatos and Pericleous2’ De Vahl Davis6 Fusegi et 

Ra = lo3 

N u m e a n  1.1 14 1.108 
Numax (at y / H )  1.581 (0.099) 1.596 (0.083) 
Numi, (at y / H )  0.670 (0.994) 0.720 (0.993) 
%a, (at Y l H )  0,153 (0.806) (0.832) 
urnax (at x / W  0.155 (0.181) (0.168) 

~ ~~~ 

1.118 1.105 
1.505 (0.092) 1.420 (0.083) 
0.692 (1.000) 0.764 (1.000) 
0.1 36 (0.8 13) 0.132 (0.833) 
0.138 (0.178) 0.131 (0.200) 

N % e a n  2.245 2.201 
Nu,,, (at y / H )  3.539 (0.143) 3.482 (0.143) 
Numi, (at y / H )  0.583 (0.994) 0.643 (0.993) 
~ m a x  (at Y / H )  0-193 (0.818) (0.832) 
~ m a x  (at x / w  0.234 (0.1 19) (0.1 13) 

2.243 2.302 
3.528 (0.143) 3.652 (0.623) 
0.586 (1.000) 0.61 1 (1~OOO) 
0.192 (0.823) 0.20 1 (0.8 17) 
0.234 (0.1 19) 0.225 (0.1 17) 

Ra = lo5 

N u m e a n  4.510 4.430 
Nu,,, (at y / H )  7.636 (0.085) 7.626 (0.083) 
Numi, (at y / H )  0.773 (0.999) 0.824 (0.993) 
urnax (at Y / H )  0,132 (0.859) (0.857) 
urn,, (at X/W) 0.258 (0.066) (0.067) 

4.519 4.646 
7.717 (0.081) 7.795 (0.083) 
0.729 ( 1 .OW) 0.787 (1.000) 
0.153 (0.855) 0.147 (0.855) 
0.261 (0.066) 0.247 (0.065) 

Ra = lo6 

N u m e a n  8.806 8.754 
Nu,,, (at y / H )  17.442 (0.0368) 17.872 (0.0375) 
Numi, (at y / H )  1.001 (0.999) 1.232 (0.993) 
urnax (at Y / H )  0.077 (0.859) (0.872) 
oms. (at x /W)  0.262 (0.039) (0.038) 

8.799 9.012 
17.925 (0.0378) 17.670 (0.0379) 
0.989 (1.000) 1.257 (1,000) 
0.079 (0.850) 0.084 (0.856) 
0.262 (0.038) 0.259 (0.033) 

In Table 111 a comparison is given between the present laminar solution and numerical results 
found in the The comparison concerns the mean. N u  along the hot wall, its 
maximum and minimum values and the locations where they occur. The same is also done for 
the maximum and minimum velocity values and their corresponding locations. There is excellent 
agreement between the present results and the benchmark solution by De Vahl Davis6 for all 
values of Ra, as well as with the solutions by Markatos and P e r i c l e o ~ s ~ ~  and Fusegi et ul.23*24 
All four solutions are less than 7% apart. 

Laminar solution data at higher Ra are more difficult to find. Therefore a comparison is only 
made with the solution by Henkes et al.” for the mean N u  along the hot wall in Table IV. 
Again excellent agreement is found between the two solutions. The maximum difference is 3 5 %  
for Ra = 10”. For the turbulent case Table V presents a comparison of our results for the mean 
Nu with results by Markatos and Pericleous” and Henkes et ~ 1 . ~ ’  For Ra = lo8 the three 
solutions agree remarkably well. As Ra increases, our results without log-functions show excellent 
agreement with the solution by Henkes et al.,” while Markatos and Pericleous” give somewhat 
higher values. Introduction of wall functions in the present work gave higher values for the 
mean N u  than those obtained by Markatos and Pericleous.” Obviously a different formulation 
for the log-functions employed by the latter must be responsible for this disagreement. 
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Table IV. Comparison of laminar solution with 
previous work (mean Nu at high Ra-values) 

This work 30.1 54.4 97.6 165.1 
Henkes et a1." 30.4 54.1 - 171.0 

Table V. Comparison of turbulent solution with previous 
works (mean Nu at high Ra-values) 

Ra 108 109 1010 

This work (no wall functions) 32.3 60.1 134.6 
Henkes et a1." 32.5 59.5 133.4 
Markatos and Pericleous" 32.05 74.7 156.85 

Figure 12 shows a comparison between the three solutions. The present results show that the 
turbulence formulation with logarithmic wall functions deviates from the laminar approximation 
solution at Ra x lo6 and gives higher predictions for Nu. The turbulence formulation without 
logarithmic wall functions approaches the laminar solution up to Ra x 10' and then deviates, 
giving a turbulent solution. Our results, as well as the results by Henkes er ~ 1 . ~ ~  and Markatos 
and Pericleous," show that the turbulent solution starts deviating from the laminar approxima- 

I 
U w 
3 
Z 

0.1 6 

0.14 

0.1 2 

0.10 
I * Henkes et 0 1 .  
1 - Henkes et 0 1 . ~ '  

0.08 

0.06 

0.04 
I I 
I I 

0.02 - 11111111 '"""d ' l l l l ld '""" '1 ' - '"""'1 ' ' 1 " " 1 '  ' 1 ' ' ' ' ' ' '  ''"''d - 
1 0  1 0  10 1 0  1 0  1 0  * loo 1 0  loio l 1  1 0  " 1 0  lJio 1410 lS 

Ra 
Figure 12. Mean Nusselt number (%) calculated at hot wall as a function of Ra. The straight line corresponds to the 

semi-analytical estimate given by Henkes er aLz2 
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tion around this Ru-value. In the same figure the semi-analytical estimation (straight line) for 
Nu-Ru-1 /3  provided by Henkes et ~ 1 . ~ ~  is also presented. It is clear that abandoning the wall 
functions brings our results towards the right direction. 

A more dramatic manifestation of the differences between laminar and turbulent (with wall 
functions) solutions is given in Figure 13, where the Nu-profile is plotted along the hot wall. 
There is a significant change in shape and magnitude as the k-e model departs from the laminar 
approximation. 

0 
N u  

Figure 13. Laminar and turbulent Nu at hot wall for different Ra-values (k-c results including logarithmic wall functions) 
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Figure 14. Thermal stratification at cavity centre versus Ra obtained from laminar and turbulent solutions 
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Table IV. Comparison of various works for a power-law correlation Nu = a(Ra)b 

a b Range 

This work (laminar solution) 
This work (laminar solution) 
This work (k--E solution, no wall functions) 
Henkes et a1.” (laminar solution) 
Markatos and PericleousZo (laminar solution) 
Markatos and Pericleous” ( k - ~  solution) 
MacGregor and Emery” 
Henkes et aL2’ (semi-analytical) 

0.142 
0.301 
0.065 
0.304 
0.143 
0.082 
0.046 
0.047 

0.299 
0.25 
0.333 
0.25 
0.299 
0.329 
0.333 
0.333 

lo3 < Ra < lo6 
lo3 < Ra < 10” 
lo8 < Ra < 10” 

lo3 < Ra < lo6 
lo6 < Ra < 10l2 
lo6 < Ra < lo9 

- 

The values of the mean N u  are representative of the situation in the boundary layers. For the 
interior of the flow a comparison is given for the thermal stratification calculated at the cavity 
centre with results published by Henkes et al.” The two solutions show excellent agreement as 
evidenced in Figure 14. 

Most of the published correlations between and R a  are of a power-law type: 
- 
N u  = ~ ( R u ) ~  

The results from the present calculation were fitted to this model and are compared in Table 
VI with similar results by Markatos and Pericleous” and Henkes et a1.” It is shown that for 
the laminar case there is good agreement between our solution and the previous solutions. For 
the turbulent case the difference in the results is easily explained by considering Figure 12. A 
comparison with experimental results by MacGregor and Emery’ ’ and an equation derived 
by Henkes et al. ’’ (using heat transfer results from a plate to a semi-infinite environment) shows 
that the k--E model overpredicts the mean Nu. 

6. CONCLUSIONS 

Natural convection in a square cavity has been analysed numerically using a control volume 
approach. Calculations have been performed for both laminar and turbulent flow (k--E model) 
with and without logarithmic wall functions for a series of R a  up to 10”. Accurate results have 
been obtained regarding grid independence. The solution captures very well all flow and heat 
transfer phenomena, especially near the walls where dense, non-uniform grids are used in the 
thin boundary layers formed there. 

The present results compare favourably with benchmark solutions6 for the laminar case and 
similar  calculation^^^^^^^^^ fo r the turbulent case. Correlations between N u  and Ra are also in 
agreement with similar ones found in the literature.20*22 The turbulent solution has a laminar 
approximation with a non-zero turbulent viscosity for low values of Ra (< lo6). This solution is 
followed by a turbulent one for R a  greater than lo6 when logarithmic wall functions are used 
or 10’ when log-functions are used only for k and E.  The mean N u  along the hot wall shows a 
sudden increase when the turbulent solution is reached. 

Comparisons of the simulation results have also been made with some experimental data for 
the primary variables and Nu-Ra correlations.’ 7 , 2 3  Although it is clear that more experimental 
data are needed for a comparison based on primary variables, it turns out that the standard k--E 
model has limitations in predicting the mean N u  along the hot wall of the cavity. 
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Apart from the turbulence model, the use of logarithmic wall functions for the temperature 
and velocity leads to significant overpredictions for Nu. Since the most important phenomena 
occur near the cavity walls while the core remains stratified, such an influence is expected. 
Logarithmic wall functions have been proved inaccurate for predicting heat transfer in natural 
convection, since by dropping them, a much more reasonable prediction for the heat transfer is 
obtained. Therefore new types of wall functions such as the power-law ones suggested by George 
and Capp" for the velocity and temperature in combination with modified versions of the k-E 
model for low-Reynolds-number flows must be checked. 
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APPENDIX: NOMENCLATURE 

aspect ratio (height/width) of cavity (dimensionless) 
gravitational acceleration (m s-') 
buoyancy production rate of turbulent kinetic energy (J kg-' s - I )  
Grashof number, Gr = gPA7H3/vz (dimensionless) 
height of cavity (m) 
turbulent kinetic energy (J kg- ') 
Nusselt number calculated at hot wall, N u  = - (H/AT)(aT/ax), (dimensionless) 
mean Nusselt number calculated at hot wall, 5 = 5:: Nu dy (dimensionless) 
pressure (Pa) 
shear production rate of turbulent kinetic energy (J kg-' s-')  
Prandtl number, Pr = v/a (dimensionless) 
heat flux (J m-'s-') 
Rayleigh number, Ra = g ~ A 7 H 3 P r / v 2  (dimensionless) 
gradient of thermal stratification calculated at centre of cavity, S = (H/AT)(dT/ay) (dimensionless) 
temperature (K) 
temperature of cold wall (K) 
temperature of hot wall (K) 
reference temperature, T, = (TH + TJ2 (K) 
dimensionless temperature, T* = (T  - T,)/AT 
horizontal velocity component (m s- ') 
dimensionless horizontal velocity component, u* = u/J(gPA TH) 
vertical velocity component (m s -  ') 
dimensionless vertical velocity component, v* = v/J(gBATH) 
width of cavity (m) 
horizontal co-ordinate (m) 
vertical co-ordinate (m) 

Subscripts 

C cold wall 
H hot wall 
m reference 
t turbulent 
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Greek letters 

coefficient of thermal diffusion (m2 s- *) 
coefficient of thermal expansion, B = l/Tm (K-I) 
overheat ratio, S = ( T ,  - T‘)/Tm (dimensionless) 
characteristic temperature difference, AT = TH - T, (K) 
dissipation rate of turbulent kinetic energy (m’ s - ~ )  
molecular kinematic viscosity (m’ s- I )  

turbulent kinematic viscosity (m’ s-’) 
density (kg m-3) 
turbulent Prandtl number for T (dimensionless) 
turbulent Prandtl number for k (dimensionless) 
turbulent Prandtl number for E (dimensionless) 
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